
  

  

Abstract— MR elastography (MRE) is a medical imaging 

technique that is particularly useful in quantifying mechanical 

properties of tissues by producing a stiffness map (elastogram). 

Recently, MRE has been applied to the brain to assess stiffness 

changes in various neurological conditions. Subsequently, 

compressive sensing (CS) is an image processing technique that 

aims to accurately reconstruct images from undersampled 

datasets, which can be used to shorten exam times or improve 

image quality. This paper aims to assess the feasibility of 

applying CS towards brain MRE exams. One fully-sampled 

brain MRE was acquired. K-space data was pseudo-randomly 

undersampled retrospectively and 𝓵𝟏-wavelet regularized 

reconstruction was performed. CS reconstructed data were 

further reconstructed to produce MR elastograms. It was shown 

using various image quality metrics that undersampling of up to 

50% produced accurate MR elastograms. 

I. INTRODUCTION 

For a number of pathologies, underlying pathological 
changes result in macroscopic changes in mechanical 
properties of tissues. This fact has been utilized by physicians 
for centuries, who have used palpation (examination by touch) 
as a simple heuristic to aid in diagnosis. A marked example of 
this is the physical differentiation between soft, benign 
lipomas and hard, malignant tumors [1]. However, there are 
other disease processes, such as liver fibrosis, dementia, 
Parkinson’s disease, hydrocephalus, and other disease that 
cause tissue stiffness changes but cannot be readily palpated. 
Magnetic resonance elastography (MRE) is a novel MR 
sequence that produces comprehensive maps of mechanical 
properties of tissues deep inside the body, termed “virtual 
palpation”, allowing physicians to quantify tissue stiffness 
without physical palpation [2].  

The underlying mechanism behind MRE lies in the motion 
encoding gradients (MEG’s) which are sensitized to the 
microscopic motion of acoustic shear waves that are 
introduced into the body by an acoustic driver, operating at a 
set frequency. The MEG’s act to change the phase of spins 
within slices of interest, as spins that are displaced 
perpendicular to the direction of shear waves, along the MEG, 
will acquire some phase. Since shear waves induce only 
microscopic displacements, MEG’s are able to resolve motion 
on the level of microns, provided the MEG’s are well-
synchronized the acoustic driver frequency [3]. The phase-
encoded displacement information can be measured in image 
space after applying the Fourier transform to raw k-space data, 
and shows a still-frame of the shear wave at one point in the 
shear wave cycle. To produce elastograms, multiple points in 
the wave cycle must be imaged to provide temporal 
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information (i.e. how the wave propagates through tissues). 
Thus, multiple images (termed phase-offsets) are acquired for 
each slice of interest. These phase-offset images are then used 
to solve for the complex shear modulus of the tissue, directly 
related to tissue stiffness and elasticity. This is done using 
complex inversion algorithms, which approximate or 
analytically solve the wave equation [4]. 

MRE has recently been applied to the brain, and has shown 
success in distinguishing between various types of dementia 
[5]. When imaging other body regions, specifically the liver, 
respiratory motion becomes a compounding factor, as the 
MEG’s are sensitive to even slight motion. Long breath-holds 
are often required, placing a large emphasis on fast imaging. 
Various techniques to reduce scan time have been employed 
for liver MRE exams, namely undersampling schemes 
(parallel imaging, partial Fourier acquisitions, etc.). However, 
because of the lack of respiratory motion artifacts in the brain, 
breath-holds for brain MRE exams are almost never used. As 
a consequence, imaging quickly has not been made a large 
priority and image undersampling is rarely discussed in MRE 
brain imaging. Despite this, undersampling techniques can still 
be used towards increasing image quality. 

One recently developed image processing theory, termed 
compressed sensing (CS), allows one to solve ill-posed 
problems by exploiting image sparsity in some domain [6], [7]. 
More specifically, if an image is sparse in some transform 
domain (wavelet, discrete cosine, etc.), random undersampling 
in Fourier space will appear as incoherent noise once the data 
is transformed into the sparse domain, at which point the 
problem becomes a denoising problem. This method has been 
shown to produce uncompromised images even with 
drastically undersampled datasets. One study has already 
shown promise in applying CS to liver MRE exams to reduce 
scan time [8]. This paper aims to assess the feasibility of 
applying CS for brain MRE exams by retrospectively 
undersampling k-space data. 

II. METHODS 

A. Data Acquisition 

One healthy volunteer (female, 28 y.o.) was scanned on a 
GE Signa Premier 3T clinical MR scanner (GE Healthcare, 
Waukesha, WI). A generic, 2D flow-compensated spin-echo 
echo-planar imaging (SE-EPI) sequence was implemented, 
utilizing parallel imaging (ASSET) to accelerate the exam by 
a factor of 2. Forty-eight slices were acquired from the top of 
the skull to the inferior aspect of the cerebellum. Further 
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imaging parameters are as follows: TR = 3600 ms; TE = 60 
ms; acquisition matrix = 80x80; in-plane resolution = 1.88 
mm; slice thickness = 3.0 mm; NEX = 1; phase-offsets = 8; 
motion encoding sensitivity (MENC) = 6.15 μm/rad; driver 
frequency = 60 Hz; scan time = 330 s.  

After completion of the scan, phase and magnitude images 
for each phase-offset image set were produced automatically 
by the scanner, resulting in 16 total images. These images were 
imported into Matlab (MathWorks, Natick, MA) and were 
recombined into complex image datasets using (1): 

m̃j(x, y) = Mj(x, y)exp(iθj(x, y)) (1) 

where θi(x, y) and Mi(x, y) are the phase and magnitude 
images respectively (as functions of pixel coordinates x and y) 
and the subscript j represent the jth phase-offset. The Fourier 
transform was applied to obtain k-space data, equivalent to the 
raw data obtained by the scanner.  

B. Retrospective Undersampling 

Raw data were subject to retrospective, pseudo-random 
undersampling using free Matlab software (SparseMRI, UC-
Berkeley). Four datasets containing the original k-space data 
for each phase-offset were replicated and undersampled with 
different undersampling factors (U): U = 0 (no 
undersampling), U = 0.33 (67% of k-space remains), U = 0.50, 
and U = 0.67, which corresponds to acceleration factors (R) of 
R =1, R = 1.5, R = 2, and R = 3 respectively. An example of 
this undersampling scheme is shown in Fig. 1. Undersampling 
was only performed in the phase-encoding direction, as this is 
the only feasible way to randomly undersample 2D scans [7]. 
A variable-density random undersampling bit mask was 
created from a custom probability density function (PDF). The 
bit mask for a given undersampling factor was applied to all 
phase offsets. The PDF acted to ensure pseudo-random 
undersampling while conserving the desired number of 
samples. The density power of the PDF was 2 for acceleration 
factors of 1, 1.5, and 2, and a constraint was added such that 
the middle 10% of k-space be preserved.  

Note that fewer phase-encode lines of k-space directly 

implies a decreased scan time, as each phase-encode line 

takes a time TR to acquire. Thus, retrospectively 

undersampling in the phase-encode direction by a factor U 

decreases the scan time by the same factor.  

C. Image Analysis 

 To analyze image quality, several common metrics were 

used, namely structural similarity index (SSIM), peak signal-

to-noise-ratio (PSNR), and Bland-Altman plots. One of the 

most commonly used metrics is SSIM, which was used to 

show relative structural image (perception-based) 

differences [9]. The full equation for SSIM was derived and 

is provided in Appendix A. Values for SSIM range from 1 

(perfectly similar) to -1 (complete opposite). PSNR (dB) was 

used to measure the ratio of the maximum possible pixel 

value in the reference image to the mean square error 

between the altered images and the reference image. Lastly, 

Bland-Altman plots were used to measure correlation, bias, 

and error between identical regions of interest (ROI’s) in the 

same location in the reference image and the reconstructed 

images. These ROI’s were placed over the frontal cortex. 

D. CS Reconstruction 

 ℓ1-wavelet regularized reconstruction was performed on 
the undersampled datasets for each phase-offset (32 
reconstructions in total) using free software (BART Toolbox, 
UC-Berkeley). The reconstruction is obtained by solving the 
constrained optimization problem, shown in (2). 

minimize   ||Wm||
1
 

s. t.     ||Fum − y||
2

< λ (2) 

where the objective function represents a ℓ1-norm 
minimization of the wavelet operator (W) acting on the 
estimated image vector (m). The constraint function enforces 
data consistency by constraining the ℓ2-norm of the difference 
of the raw k-space (y) and the undersampling Fourier operator 
(Fu) acting on the estimated image (m) to be less than some 
regularization parameter (λ). 

Optimization of the regularization parameter (λ) was 
performed for each undersampling factor by repeating the 
following procedure: (1) Select data from one phase-offset. (2) 
Perform multiple CS recons with various λ values. (3) Measure 
SSIM by comparing the non-reconstructed reference image 
and the reconstructed images at different λ values. (4) Find the 
lambda associated with maximum SSIM value (λopt). (5) 
Repeat this process until accuracy of  λopt < 0.01. Once the λopt 

 
 

Figure 1. Probability distribution function (PDF) with variable density used to create a 1D pseudo-randomly undersampled bit mask. 

This bit mask is applied to the fully-sampled dataset to produce retrospectively undersampled k-space in the phase encode direction. 



  

was found for each acceleration factor, the CS reconstruction 
was performed for all phase-offsets at λopt.  

E. MRE Reconstruction 

Once the CS reconstructed images were obtained, MRE 

reconstruction was performed using a free software 

(MREWave.exe, Mayo Clinic). The software in this 

algorithm uses local frequency estimation (LFE), a type of 

inversion technique that approximates stiffness based on 

local wave speeds calculated from phase offset images. For 

each acceleration, all 8 CS reconstructed magnitude and 

phase images were imported into the software. This was also 

done for the non-reconstructed phase and magnitude images, 

to produce a reference stiffness map. Initially, the MRE 

reconstruction was performed on the reference dataset. The 

brain was segmented and a binary mask from the reference 

magnitude images and was saved, which would later be 

applied to the 4 reconstructed datasets. Quality-guided phase 

unwrapping and high-pass Gaussian filtration ( > 4 

waves/FOV) was performed on every dataset. The software 

created stiffness maps for the reference dataset and for the 4 

CS reconstructed datasets. In total, 5 MRE reconstructed 

stiffness maps were produced. 

III. RESULTS 

Images were successfully obtained for the volunteer and k-
space data were successfully reconstructed. Random 
undersampling masks were successfully created for each 
acceleration factor and were applied to create retrospectively 
undersampled k-space. During the CS reconstruction it was 
found that for acceleration factors of R = 1, 1.5, 2, and 3, the 
λopt values were 0.331, 0.004, 0.005, and 0.010 respectively. 
CS reconstructed images are shown in Fig. 2. While, 
subjectively, the magnitude images are of good quality, certain 
regions of the brain (particularly the gyri) in the brain become 
smoothed with increasing acceleration factors. The phase 
appears to be more consistent throughout the brain, while noise 
outside of the brain appears to change drastically between 
accelerations. Stiffness maps produced from the CS 

reconstructed images are shown in Fig. 3. The stiffness maps 
appear highly similar up to an acceleration of R = 2. At R = 3, 
it is noted that severe image degradation becomes apparent. 
MRE reconstructed stiffness maps were compared to the 
reference stiffness map using SSIM and PSNR image analysis, 
shown in Fig. 4. SSIM measurements decreased steadily from 
0.84 to 0.79 until R = 2. SSIM measurements decreased by 
nearly half from R = 2 to R = 3. This is evidenced by the 
dissimilarity of R = 3 stiffness map shown in Fig. 3. The PSNR 
measurements also showed a similar trend. 

 
Figure 2. CS reconstructed EPI magnitude and phase images of the brain at increasing undersampling (acceleration) factors are shown for the 1st phase-

offset. The orange circle indicates area of the brain that are particularly affected by CS. 

 

 

 

Figure 3: Stiffness maps for each acceleration factor, shown on 

identical, Jet color scales. 



  

SSIM and PSNR image analysis were also performed on 
the magnitude and phase EPI images for each acceleration 
factor (Fig. 4). For both phase and magnitude, SSIM and 
PSNR decreased approximately linearly. However, the 
magnitude images showed much higher SSIM and PSNR 
values compared to the phase images. SSIM in the magnitude 
images never decreased below 0.8 and PSNR never decreased 
below 12 dB. Phase images showed much lower SSIM and 
PSNR values. Even with a non-undersampled, CS 
reconstructed (R = 1) dataset, SSIM is approximately 0.46 and 
PSNR is -0.6. Bland-Altman plots also reflect these results. 
Data within the 20x20 pixel ROI for the reconstructed stiffness 
maps became less correlated with reference stiffness map ROI 
data, as seen in Table I. Additionally the magnitude of the ROI 
bias, 95% confidence interval, and coefficient of variation 
begin to increase as the acceleration factors increase. 

TABLE I.  BLAND-ALTMAN ANALYSIS 

Accel.  
Bland-Altman Analysis Parameters 

R2 

correlation 
Bias (kPa) 

95% CI 

(kPa) 

Coeff. of 

Var. (%) 

R = 1.0 0.95 -0.55 3.3 7.1 

R = 1.5 0.90 0.03 4.9 11 

R = 2.0 0.79 -2.3 7.0 17 

R = 3.0 0.38 -6.6 13.7 37 

 

IV. DISCUSSION 

     From the SSIM, PSNR, and Bland-Altman analyses, it is 
clear that accelerations of up to 2 produce reliable results. 
However, an acceleration of 3 produced very low SSIM and 
PSNR measurements, as well as a clinically unacceptable 
stiffness bias. These CS accelerations are much lower than are 

typically seen in other CS articles. This is almost certainly due 
to the fact that most applications of CS are primarily interested 
in reconstructing magnitude images and do not incorporate 
aspects of phase into their image analysis. It is likely that 
undersampling of k-space adversely impacts both the 
magnitude and the phase image quality, resulting in less 
reliable data. The results from this study echo the results 
obtained in the study where the feasibility of CS in liver MRE 
was assessed, in which the authors found that an acceleration 
factors of up to 1.5 to be reliable [8]. 

 One major limitation of this study was restricting the study 
to only ℓ1 regularization and one transform domain (wavelet). 
It is possible that these images are sparse in the temporal 
(phase-offset) domain, which could be further exploited. 
Secondly, ℓ2 regularization was not performed, and it is 
possible that this may also produce more viable results.  

 Future directions include testing with different inversion 
algorithms. Other algorithms, specifically direct inversion, 
have proven to be more accurate and are much more common 
on clinical scanners. Testing with these inversion techniques 
may be more clinically useful and may provide better results. 
Additionally, 3D acquisitions would allow another dimension 
of random undersampling, which would help in making the 
undersampling artifacts more incoherent in the transform 
domain, and would expectedly increase image quality. 

V. CONCLUSION 

 In conclusion, it appears that compressed sensing is 

feasible for brain MRE exams. Accelerations of up to 2 

produced reliable, high quality images as measured by PSNR, 

SSIM, and Bland-Altman analyses. Follow-up investigations 

need to be done regarding different CS reconstruction 

algorithms. 

 

 

 

Figure 5: PSNR and SSIM image analysis on the MRE reconstructed stiffness maps, CS reconstructed EPI magnitude images, and CS reconstructed EPI 

phase images for each acceleration factor. The CS reconstructed data was taken from the 1st phase-offset. 



  

APPENDIX A 

 The structural similarity index (SSIM) is the product of 

luminance (A1), contrast (A2), and structure equations (A3).  

 

l(x, y) =
2μxμy + c1

μx
2 + μy

2 + c1
 (A1) 

 

c(x, y) =
2σxσy + c2

σx
2 + σy

2 + c2
 (A2) 

 

s(x, y) =
σxy + c3

σxσy + c3
 (A3) 

where 𝜇𝑥 is the average measurement over some window x 

(size NxN) of an image and 𝜇𝑦 is the average measurement 

over a different window y (also size NxN). 𝜎𝑥
2 and 𝜎𝑦

2 define 

the variance of these windows, and 𝜎𝑥𝑦 defines the 

covariance. c1 (A4) and c2 (A5) are two variables to stabilize 

the division with a weak denominator.  

 
𝑐1 = (𝑘1𝐿)2 (𝐴4) 

 
c2 = (k2L)2  (A5) 

 

Often, c3 is defined as c2/2. The SSIM is a weighted 

combination of the equations above (A6). 

 

SSIM(x, y) = l(x, y)α × c(x, y)β × s(x, y)γ (A6) 

 

It is common to simply set the exponents (α, β, λ) equal to 1. 

This results in the commonly known equation below. 

 

SSIM(x, y) =
(2μxμy + c1)(2σxy + c2)

(μx
2 + μy

2 + c1)(σx
2 + σy

2 + c2)
(A7) 
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