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Significance and Aims 
Segmentation is a vital task in modern medical image processing that serves to reduce data 

analysis only to specific subregions that are of clinical interest. Advances in medical imaging 

technologies have provided the medical and scientific communities with larger datasets of ever-

increasing image quality. Thus, there is an inherent need for robust segmentation methods that 

can extract clinically important information automatically, as opposed to performing time-

consuming manual segmentation which is still done today in some clinical applications. The 

overarching goal of this project is to successfully implement an algorithm that automatically 

segments medical images using a region-growing algorithm. This will be accomplished through 

the following specific aims.  

 

Specific Aim 1: Reproduce an existing region-growing segmentation algorithm using a 

simplified Mumford-Shah functional. 
 

Specific Aim 2: Develop a novel region-growing algorithm using the same formulation but 

with added flexibility in initialization conditions and adjustments to the cost function 

calculation, in hopes of increasing efficiency and accuracy. 

 

With respect to expected outcomes, the work proposed in specific aim 2 is expected to decrease 

post-processing times and increase segmentation reproducibility, which will in turn positively 

impact clinical workflows that currently utilize manual segmentation methods. 

 

1.  Introduction 
Segmentation is an image processing technique that takes advantage of one or more imaging 

features to partition an image (or set of images) into useful regions of interest. This can 

analogously be described as assigning labels to pixels in an image, grouping pixels that share 

similar features. This process is very commonly seen in medical image processing, in which a 

medical image is decomposed into clinically significant segments, which can make the image 

easier to visualize or can simplify the data analysis procedure (restricting analysis only to a 

subset of the image). The degree and accuracy to which an object is segmented depends highly 

on the task being performed, and is thus highly dependent on the specific application. Some 

applications involve: quantification of tissue volume, localization of pathology, treatment 

planning, and statistical analysis of tissue regions1. Because of the large diversity in imaging 

tasks, a large variety of segmentation methods have been developed to better adapt to these 

disparate imaging task. Segmentation techniques range from manual methods, in which a user 

manually identifies regions of interest, to more automated methods, in which segmentation is 

performed unsupervised. Manual methods are often time-consuming and are prone to relatively 



high inter- and intraoperator variability2. Thus, there is an inherent need for robust segmentation 

methods that can extract clinically important information automatically, as opposed to time-

consuming manual segmentation which is still done today in some clinical applications. 

 

There are several common methods that are used to automatically or semi-automatically segment 

images, each with varying degrees of accuracy, efficiency, and simplicity. One relatively simple 

and popular segmentation technique is region-growing, a method that groups similar pixels into 

larger subregions based on a predefined condition. This method begins with a “seed point” 

placed in the image, and the region grows based on the predefined condition, which in most 

cases is a gray-level threshold. Pixels will be advanced outwards from the “seed” and will be 

added to the region if they are within the range of gray level thresholds. In some cases, manual 

placement of seeds is not desired, as in fully-automated processing. Several methods exist to 

allow for automatic placement of seed points3. One approach is to subdivide the image initially 

into a set of arbitrary, disjointed regions and then iteratively merge or split them based on the 

criteria stated previously3. 

 

A segmentation can also be performed using variational methods, which is the process of 

minimizing a variational model (cost function) that suitably describe a practical segmentation 

problem. This was first described by Geman and Geman4 in 1984. Variational methods can be 

solved using a probabilistic approach, often modeled by Markov random fields and optimized 

with Bayesian estimation (a posteriori estimation)5. Another commonly encountered variational 

model is termed the Pott’s model. The formulation is given in equation 1: 

 

minimize [ ν‖∇𝐟‖0 +  ‖𝐟 − 𝐠‖2
2 ] (1) 

 

where ν is the regularization parameter, the vector f is the output segmentation image, g is the 

input image, and ‖⋅‖p represents the ℓ𝑝 norm. The first term enforces “flatness” of the 

segmentation and the second term enforces data fidelity, with the regularization parameter ν 

balancing the two terms. This formulation is quite difficult to minimize because of the ℓ0 norm 

in the first term, and an analytical solution for the gradient of the cost function is thus not easily 

solved. However, this can be solved using advanced techniques such as convex relaxation 

approach, as noted in many articles6–8. Another closely related formulation is termed the 

Mumford-Shah (MS) model9, which enforces both boundary length sparsity and data fidelity of 

the segmentation output. This model was constructed to unify several pre-existing theories 

regarding variational methods. This model will be more thoroughly discussed in the methods. It 

should be noted that each of these approaches yield non-convex topologies, which can make the 

model difficult to minimize, particularly globally. Despite this, generally satisfactory images can 

be found despite the non-convex nature of the problem, and can be further optimized when 

multiple segmentation and image processing techniques are used in a multi-stage process2. 

 

Koepfler at al.10 presented a novel multi-stage segmentation algorithm that combines both 

region-growing and variational methods, specifically using the simplified Mumford-Shah (SMS) 

functional. In this specific paper, every pixel in an image is assigned a separate region. If the cost 

function decreases when the pixels are merged, then the two regions are merged. Alternatively, if 

the cost function increases when the pixels are merged, they are left as separate regions. This is 

done iteratively for all regions. Several distinct disadvantages arise from this type of algorithm. 



First, this method does not calculate the global cost function, but rather the cost of only the two 

regions being considered. Additionally, initializing the image by assigning every pixel to a 

different region can become very computationally expensive, particularly in the case for large 

image matrices. 

 

The purpose of this study is twofold: (1) to successfully reproduce the segmentation algorithm 

described by Koepfler et al. and to (2) develop a new algorithm to alleviate the drawbacks of the 

aforementioned algorithm. Both algorithms will be tested on simulated phantoms and clinical 

images and the results will be compared qualitatively as well as quantitatively, using several 

common segmentation performance metrics. The hypothesis is that our novel algorithm will both 

increase the accuracy and efficiency of the previously described algorithm. 

 

2.  Theory and Methods 
2.1 Mumford-Shah Functional 

The Mumford-Shah (MS) functional in the continuous domain can be fully expressed as: 

𝐸(𝜇, 𝜈) = 𝜇 ∬ (𝐟 − 𝐠)2𝑑𝐴
 

Ω

+ ∬ |∇𝐟|2𝑑𝐴
 

Ω \K

+ 𝜈[𝐻𝑑−1(K)] (2) 

where the vector f represents the output image (segmentation) and g represents the actual image. 

The first term is the data fidelity term, in which the mean square error between the segmentation 

and the image is integrated over the entire image set (Ω). Note that individual regions in the 

segmentation image (Ω𝑖) are disjointed connected open subsets of a planar domain Ω, each one 

with a piece-wise smooth boundary with K representing the boundary set, such that: Ω = Ω1 +
Ω2 + ⋯ + Ω𝑅 + 𝐾. The second term integrates over all non-boundary sets (Ω − K = ∑ Ω𝑟

𝑅
𝑟=1 ). 

This second term constrains f to not vary considerably over the each segmentation subregion. 

Lastly, the third term requires that the boundary set be as small as possible. Regularization 

parameters 𝜇 and 𝛾 balance the data term and the length of boundaries of all of the segmentation 

regions respectively. The function 𝐻𝑑−1 is the d-1 dimensional Hausdorff distance operator. In 

this paper, only 2D images will be considered. Thus, the sets will be constrained to ℝ2 coordinate 

space and 𝐻𝑑−1 = 𝐻1 which simply measures the length of the boundary set K. For simplicity, 

the 1-dimension Hausdorff operator 𝐻1(𝐾) will be denoted as 𝐿(𝐾).  

 

Eq. 2 can be greatly simplified if one assumes that f be piece-wise constant over each open set 

Ω𝑖. This then causes the gradient of the constant function f to be 0, eliminating the second term. 

Doing so leads to the simplified Mumford-Shah (SMS) functional, expressed as: 

𝐸(𝜈) = ∫ (𝐟 − 𝐠)2𝑑𝑥
 

Ω

+ 𝜈𝐿(K) (3) 

The μ parameter can also be dropped as only one regularization parameter is needed for the two 

terms. Note that if f is assumed to piece-wise constant, the first term will be minimized if f is the 

mean of g over the rth region. Thus, the SMS functional can be further simplified and discretized: 

𝐸(𝜈) = ∑ ∑ (gi,r − 𝑚𝑒𝑎𝑛Ω𝑟
(gr))

2
𝑁

𝑖=1

𝑅

𝑟=1

+ 𝜈𝐿(K) (4) 

in which the 𝑚𝑒𝑎𝑛Ω𝑟
(gr) = fi,r is the approximated value of the rth subregion. Here, gi,r 

represents the ith pixel in the rth subregion of the input image. The mean squared error will be 

calculated for each subregion (Ω𝑟) and will be added to the total length of all non-overlapping 

boundaries (boundary set K) to give the total energy of the image, denoted by 𝐸(𝜈). In words, 



this means our segmentation (fi,r) will be approximated using the mean value gr of that 

subregion. Recall that Ω = Ω1 + ⋯ + Ω𝑅 + 𝐾. By combining the each subregion, one can create 

the total segmented image. Interestingly, equation 4 is very closely related to the Ising model, 

describing the grouping of discrete magnetic dipole moments of atomic spins to characterize 

global ferromagnetic behavior. Equation 4 will be the primary equation used to calculate the 

energy for both algorithms discussed below. 

 

It turns out that this equation is exactly equivalent to the Pott’s model. Recall from the 

introduction the formulation of the Pott’s model: minimize [ ν‖∇𝐟‖0 +  ‖𝐟 − 𝐠‖2
2 ]. The ℓ2-norm 

term is exactly equivalent to the first term in the SMS functional, aside from the absolute value 

which is redundant since the difference between the segmentation and the input image is 

squared. Secondly, if one assumes that 𝐟 is piece-wise constant segmentation, the gradient of 𝐟 

will only leave edges. The ℓ0-norm is essentially counting the number of discrete boundary 

edges, which is precisely what the Hausdorff length is calculating. Lastly, the ν parameter exists 

in both equations to regularize the equation. Thus, the Pott’s model and the SMS functional are 

equivalent under the assumption that the segmentation image f is piece-wise constant. 

 

2.2 Koepfler Algorithm 

The Koepfler algorithm10 was implemented in MATLAB2018b (Mathworks, Natick, MA). This 

algorithm used the SMS cost function (Eq. 4) and region-growing to perform segmentation. 

Specifically, the algorithm initialized a region map in which every pixel was labelled as an 

individual region. For every pixel (starting from the top left pixel), each adjacent (4-connected) 

pixel was tested by: (1) evaluating the SMS functional for each of the two regions separately and 

(2) evaluating the functional when the two regions are merged. If merging decreased the cost 

function, then the two regions were merged. On the other hand, if the cost function increased 

when the pixels were merged, they were left as separate regions. This was done iteratively for 

every pixel in the image until that region could not be merged, then the same procedure would be 

performed on the next candidate region, keeping a track record of the updated region map. The 

region map could be converted to a segmentation image by averaging the input image values 

over the area of each unique subregion 

described by the region map. This algorithm 

process is outline in Figure 1. Note that the 

cost is not calculated globally over the whole 

region, instead it is calculated between just 

two regions at a time, meaning the cost 

function differential is instead being 

calculated. 

 

The performance of this algorithm was first 

tested using a modified Shepp-Logan brain 

phantom with an image matrix size of 

256x256. Three degrees of noise of noise 

were added to the original Shepp-Logan, 

producing three test phantoms: σ2 = 0, σ2 = 

0.003, and σ2 = 0.005. An edge-preserving 

bilateral filter was applied to all three 

Figure 1: Outline of a generic algorithm used for a variational 
method region-growing scheme. In this paper, the SMS functional 
is used as the cost function. 



images to assist in the denoising. Additionally, one brain image with a prominent brain tumor 

was acquired from the BRATS-SMIR public database11, in which no bilateral filter was used. 

After the algorithm was completed on all of the preprocessed phantom and brain datasets, the 

segmentation image, region map, total number of regions, computation time, and regularization 

parameter value were recorded. Several regularization values were tested for each of the four 

images and an optimal value was chosen qualitatively. 

2.3 Our Algorithm 

A novel algorithm was developed in MATLAB2018b (provided in Appendix A) to further 

optimize the region-growing algorithm established by Koepfler. Our algorithm incorporated a 

calculation of a global cost function evaluated over the entire image domain, instead of 

restricting the calculation to a cost function differential of just two regions being considered. 

This allowed for a 2D visualization of the descent of the cost function energy as a function of 

iteration.  

 

Furthermore, the initialization conditions were changed from a strict condition where each pixel 

was its own region to a more flexible type initialization, intended primarily to increase efficiency 

and potentially accuracy. To test this, one specific type of initialization was performed. A 

standard region-growing technique, as described in the introduction, was used to produce an 

initial segmentation. The initial seed point, like the Koepfler algorithm, began in the top left 

pixel. Regions were grown based on a threshold condition using a built-in MATLAB command 

grayconnected. This connected adjacent (4-connected) pixels based on a gray-value threshold. 

Note that this initialization was performed prior to any SMS functional evaluation. For each of 

the four images, optimal gray-value thresholds were qualitatively selected using a range of 

different thresholds. Once the optimal threshold was selected, standard region growing mask was 

created and the same SMS functional procedure was performed, merging two regions if the 

global cost function decreases or alternatively leaving them as separate regions if the cost 

function increases.  

 

After the algorithm was completed, the segmentation image, region map, total number of 

regions, computation time, and regularization parameter value were recorded. This was done for 

the same datasets as in the previous algorithm. Several regularization values were tested for each 

of the four images and an optimal value was chosen qualitatively. Lastly, two additional brain 

ROI 

Figure 2: (Left) Original 256x256 modified Shepp-Logan simulation phantom, made in Matlab. The ROI is the 
region that will be compared with DICE coefficients. (Middle) The same phantom with a noise level of σ2 = 0.003 
artificially added and preprocessed with a bilateral filter, acting to smooth the noise and preserving the edge 
structures. (Right) Clinical MRI image of a brain with a large brain tumor. 



datasets were acquired for demonstration purposes and segmentations will be shown in the 

results section.  

 

2.4 Metrics 

To quantitatively compare both algorithms, computation time, number of initial regions, and 

number of final images were compared. DICE coefficients were used to compare one specific 

segmentation region in the phantom to a ground-truth segmentation. Shown in Figure 2 is the 

modified Shepp-Logan phantom. The segmentation region of interest (ROI) that was compared 

is illustrated in the figure. The ground-truth can be easily obtained by a simple thresholding 

procedure performed on the original Shepp-Logan phantom, which is inherently composed of 

piecewise constant subregions. This region was chosen because it had the most variability 

between algorithms and because the segmentation of this region was highly dependent on noise. 

The DICE coefficient is given in Eq. 5: 

𝐷𝑆𝐶 =
2|𝑋 ∩ 𝑌|

|𝑋| + |𝑌|
(5) 

In this equation, |X| and |Y| represent the number of elements in a test set and ground-truth set, 

respectively. The equation is essentially defining the amount of overlap between the two 

segmentations, and is scaled from 0 to 1. In the brain analyses, DICE coefficients were not used 

because no ground-truth segmentation was obtained. Instead, only qualitative assessment of the 

brain images was performed. 

 

3.  Results 
All 4 phantom and brain datasets were successfully segmented for both algorithms. In a 

qualitative sense, both algorithms produced fairly high quality, comparable, segmentations once 

the regularization parameter (and region-growing threshold) was optimized. A summarized table 

for both algorithms is given in Table 1. 

 

Images of the Koepfler algorithm are shown in Figure 3. The computation times were between 6 

and 11 minutes for all four images. The DICE coefficient showed excellent agreement to the 

ground-truth segmentation as all coefficients were above 0.95. The initial regions for each image 

were 65536 (2562) as expected. The regularization parameters were much higher for the Koepfler 

algorithm than for our algorithm, typically around 100-300.  

Table 1: Quantitative comparison between both algorithms. 



 

Images of our algorithm are shown in Figure 4. Initial segmentation using a standard region-

growing technique was successfully implemented. Figure 5 shows a progression of the standard 

region-growing used in the initialization procedure. By implementing the initialized 

segmentation, the number of initial regions was greatly reduced (often over 100-fold). 

Computation times were reduced drastically, which ranged from 20 seconds to 2 minutes. The 

DICE coefficient also showed excellent agreement to the ground-truth segmentation, however 

the coefficients were decreased slightly from the Koepfler algorithm. 

 

 

Figure 3: Output for the Koepfler algorithm for all 4 datasets. From left to right, phantoms with noise σ2 = 0, σ2 = 0.003, σ2 = 
0.005 and a clinical brain image. Regularization parameters are provided in the bottom left part of the image. 

ν = 150 

 σ2 = 0.003  σ2 = 0 

 ν = 100 ν = 170 

 σ2 = 0.005 

Figure 5: Progression of a standard region-growing applied to a brain image. This procedure was used as initialization for our 
algorithm. Images from left to right indicate the progression, with the far right image representing the final initialization (initial 
regions = 420). 

ν = 250 

 Brain 

 σ2 = 0 

 ν = 0.1  t = 0.01 

 σ2 = 0.003 

 ν = 0.02  t = 0.06 

 σ2 = 0.005 

 ν = 0.05  t = 0.07  ν = 0.10  t = 0.11 

 Brain 

Figure 4: Output for our algorithm for all 4 datasets. From left to right, phantoms with noise σ2 = 0, σ2 = 0.003, σ2 = 0.005 and a 
clinical brain image. Regularization parameters are provided in the bottom left part of the image and initialization gray-level 
threshold levels are provided in the bottom right part of the image. 

 time = 15%  time = 25%  time = 60%  time = 100% 



Finally, the two additional brain segmentations are shown in Figure 6. Additionally, a plot of the 

progression of the SMS cost function as a function of iteration is shown in Figure 7. 

 

4.  Discussion and Conclusion 
Qualitatively, both algorithms performed quite well, but performance decreased rapidly in the 

presence of noise. Our novel algorithm did decrease computation times drastically, however the 

DICE coefficients decreased slightly, indicating that our algorithm was not as accurate as the 

Koepfler algorithm. In terms of overall effectiveness of the algorithm, this decrease was almost 

negligible and does not negate the drastic decrease in computation times. For both algorithms, 

many regularization parameters were tested to find the ideal ν value. In other words, the final 

segmented image was highly dependent on the regularization parameter. Decreasing the 

computation time allowed for much quicker testing of suitable ν value, and would be much more 

practical in a clinical setting where time may be limited. Finding a more rigorous, analytical 

method for find the best regularization parameter would be useful in saving time and increasing 

performance. 

 

 It should be noted that noise greatly affected the segmented image, and quickly degrades the 

outcome even with the addition of slight noise. Filtering the images to smooth the noise did 

create better segmentations. Testing with different initializations may prove to yield even more 

accurate results, particularly initializations of a stochastic nature, such as genetic algorithms. Due 

to the deterministic nature of our initialization (starting with the top-left pixel and using a set 

threshold), it is likely that solutions are constrained to local minima due to the high 

dimensionality and non-convexity of the problem. We were in fact successful in implementing a 

genetic segmentation algorithm, however, due to time limits, we could not use this as an 

initialization. It is anticipated that stochastic algorithms may help find more accurate solutions by 

Figure 6: Brain MRI images of 2 patients with large 
intracranial tumors. The segmentation qualitatively 
performed well over the tumors of interest. Segmentation 
for these images were performed using our segmentation 
algorithm. 

Figure 7: SMS energy as a function of merging operation 
(iterations). Note the drastic decrease in energy for some 
iterations. These cases are the result of a large region merging. 



“jumping out of local minima”. Another point to make about initialization is that if one sets a 

high gray-value threshold for the standard region-growing initialization (allowing many pixels to 

be grouped together) one is greatly restricting the number of possible solutions. This is because 

the overall amount of regions decrease when the threshold increases, leading to less possible 

solutions. One of the downsides to our algorithm is that another parameter needs to be optimized, 

namely the gray-value threshold.  

 

In conclusion, region growing using the simplified Mumford-Shah functional is a practical tool 

for basic image segmentation when used with proper initialization. However, performance 

degrades rapidly in the presence of noise. The Koepfler algorithm successfully performed high 

quality segmentations, but the computation time was relatively high. Our algorithm decreased 

this computation time drastically by initializing a segmentation using a standard region-growing 

technique. Our algorithm preserved the quality of the segmentation based on quantitative DICE 

comparison. These results suggest an improvement upon the Koepfler algorithm, however, more 

rigorous quantitative comparison are needed to confirm this.  
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Appendix A 
 

Main Script 

%% Region Growing Segmentation Algorithm 
% 
% Authors:      Tim Ruesink (truesink@wisc.edu) 
%               Lawrence Lechuga (llechuga@wisc.edu) 
%               Grant Roberts (gsroberts@wisc.edu) 
% Institution:  University of Wisconsin - Madison 
% Department:   Mechanical Engineering and Medical Physics 
% Last Update:  05/01/2019 
% Built for:    MATLAB 2018 
% 
% Performs region-growing (RG) using a simplified Mumford-Shah functional. 
% Initialization is done using region-growing ('grayconnect' function) 
% based on a given pixel-value tolerance (tol). Further segmentation is  
% done by proposing a merging of two neighboring regions and evaulating if 
% this proposed merge decreases the simplified MS functional of the image. 
% This process is done iteratively for every initial region. Regularization 
% parameter (nu) controls # of regions by weighting region length term. 
% Simplified MS: norm(trueImage-approxImage) + length(regions) 
%   where: approxImage is a piecewise-constant approximation of true image 
%   based on average pixel value in region, and length of regions is the 
%   total perimeter length of all regions. 
%  
% Inspired by: Georges Koepfler and Russell Valentine 
% https://coldstonelabs.org/files/science/math/Intro-MS-Valentine.pdf 
% 

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.53.1631&rep=rep1&typ

e=pdf 

  
%% Import Data 
% Reads in PNG, MAT, or DICOM files 
file = 'brain8.mat'; % Name of image file in current directory 
if sum(contains(file,'png')) 
    rawImage = imread(file);            % read png file 
elseif sum(contains(file,'mat')) 
    rawImage = load(file);              % load mat file 
    rawImage = struct2array(rawImage); 
elseif sum(contains(file,'dcm')) 
    rawImage = dicomread(file);         % import dcm file 
else  
    disp('Could not recognize file type. Only reads PNG, MAT, and DICOM 

files'); 
end  
 

%% Assign variables and initialize matrices 
nu = 0.1; % regularization parameter 
tol = max(rawImage(:))*0.1; % initial RG tolerance, merge pixels w/in tol 
trueImage = double(rawImage); % input image 

  
%% Initialize Segmentation 
regions = init_seg(trueImage,tol); % initial set of regions 



[approxImage,totaLength] = approximateFull(regions,trueImage); % create 

initial segmentation 
f_init = approxImage; % grab initial approximation 
L = getAllLengths(regions); % array of region edge lengths 
E = cost(approxImage,trueImage,totaLength,nu); % compute the cost (mumford 

shah) 
%% Merge Regions 
labels = unique(regions); % get region labels 
N_regions = length(labels); % number of regions in initial segementation 
L_temp = L; 
k = 1; 
fig2 = figure(2); 
fig2.Position = [50 700 1400 400]; 
for r = 1:N_regions 
    if ismember(r,labels) % if this region still exists 
        added = []; 
        for p = 1:N_regions 
            added_p = added; % used to test if no regions are added (break) 
            [regions_temp,added] = merge(regions, r, added); % merge adjacent 

regions 
            proposedAdd = added(end); % proposed region addition 
            L_temp(r) = edgeLength(r,regions_temp); % set new individual 

region length 
            L_temp(proposedAdd) = 0; % set merged region length to zero 
            totaLength = sum(L_temp); % total length 
            % [approxTemp,~] = approximateFull(regions,trueImage); % 

approximate image 
            approxTemp = approximate(r,proposedAdd,regions,approxImage); % 

create approximate image 
            E2 = cost(approxTemp,trueImage,totaLength,nu); % calculate cost 
            if (E2-E(k) < 0) % does the cost decrease by merging the new 

region? 
                k = k+1; 
                regions = regions_temp; % if so, lets change our regions 
                L = L_temp; 
                E(k) = E2; % add result to energy array 
                labels = unique(regions); 
                approxImage = approxTemp; 

                 
                % Updated regions and energy figures 
                subplot(1,3,1); imagesc(regions); title('Regions') 
                subplot(1,3,2); plot(1:1:length(E),E); title('Energy'); 

xlabel('Merging Operations'); ylabel('Energy') 
                subplot(1,3,3); bar(length(labels)); 

set(gca,'xticklabel','Number of Regions') 
                drawnow 

                 
                % Display outputs 
                disp(['Iteration: ',num2str(r),'. Region 

',num2str(added(end)), ' added to region ', num2str(r),'. attempted merge: 

',num2str((p))]) 
            elseif size(added_p) == size(added) 
                disp(['Iteration: ',num2str(r),'. There are no more adjacent 

regions next to region ', num2str(r),'. attempted merge: ',num2str((p))]) 
                break 
            else 



                disp(['Iteration: ',num2str(r),'. Region 

',num2str(added(end)), ' NOT added to region ', num2str(r),'. attempted 

merge: ',num2str((p))]) 
                L_temp = L; 
            end 
        end 
    end 
end 
f_final = approxImage; 
regions_final = regions; 
N_regions = length(labels); 

  
figure;  
subplot(1,3,1); imshow(trueImage,[]); title('Image') 
subplot(1,3,2); imshow(f_init,[]); title('Initalization') 
subplot(1,3,3); imshow(f_final,[]); title('Final Segmentation') 

 

 

 

  



Ancillary Functions 

%% Initial Segmentation 
% Description:  
%   Basic region-growing segmentation utilizing 'grayconnected' function  
%   to connect regions of like pixels. Also fills in small holes.  
% Returns:  
%   regions = basic region segmentation (initialization) 
% Arguments: 
%   trueImage = input image (double) 
%   tol = threshold for "like pixels" (see 'grayconnected') 
% Dependencies: 
%   NONE 

  
function [regions] = init_seg(trueImage,tol) 

  
R_num = 0; % initialize region number 
mask = ones(size(trueImage)); % matrix for regions available for merging 
regions = zeros(size(trueImage)); % initialize region matrix 

  
while (sum(mask(:)) > 0) 
    R_num = R_num + 1; % update region number 
    [Rx, Ry] = find(mask == 1,1); % find first instance of new region 
    temp_mask = grayconnected(trueImage,Rx,Ry,tol); % connect like pixels 
    largeRegions = bwareaopen(~temp_mask, 10); % fill in holes < size 10 
    temp_mask = ~largeRegions; % invert to turn region of interest to 1's 
    regions(temp_mask) = R_num; % assign this region to a specific region # 
    trueImage(temp_mask) = NaN; % exclude region in trueImage for next 

grayconnected iter 
    mask = mask - temp_mask; % remove already segmented region from mask 
    imagesc(regions); axis square; title('Unique Region Labels'); 
    drawnow; 
end 

  
end 

 

%% Approximate Image 
% Description:  
%   Approximates an image based on regions and true image.  
%   Image approximation is done by averaging true image pixel values in  
%   each region. 
% Returns:  
%   approxImage = image approximation (double) 
%   totaLength = sum of total length of each region 
% Arguments: 
%   regions = image of distinct region labels (double) 
%   trueImage = input image (double) 
% Dependencies: 
%   edgeLength.m 

  
function [approxImage,totaLength] = approximateFull(regions,trueImage) 

  
totaLength = 0; 
approxImage = zeros(size(regions)); 



labels = (unique(regions)); % unique region numbers (labels) 
N_regions = length(labels); % number of total distinct regions 

  
for r = 1:N_regions 
    areaR = (regions == labels(r)); % returns 1's in the current region, and 

zeros elsewhere 
    approxImage = approxImage + mean(trueImage(areaR))*areaR; % add 

approximation of region r to f 
    totaLength = totaLength + edgeLength(labels(r),regions); % iteratively 

add region lengths 
end 

  
end 

 

%% Get Each Region Edge Length 
% Description:  
%   Calculates discrete edge length (perimeter) of each region. 
%   Note this does not count outside edge of image as a border 
% Returns:  
%   L = array of region length 
% Arguments: 
%   regions = image of distinct region labels (double) 
% Dependencies: 
%   NONE 

 
function L = getAllLengths(regions) 

  
[m,n] = size(regions); 
labels = unique(regions); % unique region numbers (labels) 
N_regions = length(labels); % number of total distinct regions 
L = zeros(N_regions,1); % initialize length array 
for r = 1:N_regions 
    for i = 1:m 
        for j = 1:n 
            if regions(i,j) == r 
                if (i > 1 && regions(i-1,j) ~= r) % if there is a border b/w 

pixel of interest and next pixel  
                    L(r) = L(r) + 1; % add 1 to the length 
                end 
                if (i < m && regions(i+1,j) ~= r) 
                    L(r) = L(r) + 1; 
                end 
                if (j > 1 && regions(i,j-1) ~= r) 
                    L(r) = L(r) + 1; 
                end 
                if (j < n && regions(i,j+1) ~= r) 
                    L(r) = L(r) + 1; 
                end 
            end 
        end 
    end 
end 

  
end 

 



%% Cost Function 
% Description:  
%   Calculates cost function (simplified mumford-shah functional) value. 
%   Simplified MS: L2-norm(trueImage-approxImage) + length(regions) 
%       where: approxImage is a piecewise-constant approx of true image 
%       based on average pixel value in region, and length of regions is 
%       total perimeter length of all regions. 
% Returns:  
%   E = cost function value 
% Arguments: 
%   approxImage = approximation of true image (double) 
%   trueImage = input image (double) 
%   totaLength = sum of length of all regions 
%   nu = regularization parameter 
% Dependencies: 
%   NONE 

  
function E = cost(approxImage,trueImage,totaLength,nu) 

  
data_term = norm(approxImage-trueImage); % data consistency (L2-norm) 
edge_term = nu*totaLength; % regularization limiting length of region edges 
E = data_term + edge_term; % cost function value 

  
end 

 

%% Edge Length 
% Description:  
%   Calculates discrete edge length (perimeter) of a region. 
% Returns:  
%   regions = new map of distinct region labels 
%   added = new proposed region to merge 
% Arguments: 
%   regions = image of distinct region labels (double) 
%   R = region of interest 
%   added = regions which have already been tested 
% Dependencies: 
%   NONE 

  
function [regions,added] = merge(regions, R, added) 

  
flag = 0; 
[m,n] = size(regions); 
for i = 1:m 
    for j = 1:n % iterate left to right 
        if (regions(i,j) == R) 
            if (i > 1 && regions(i-1,j) ~= R && sum(eq(regions(i-

1,j),added))==0) % check row above 
                % if there is a border between the region of interest 
                added = [added, regions(i-1,j)]; % region of proposed merge 
                mask = (regions == regions(i-1,j)); % create mask of region 

to be added 
                regions(mask) = R; % merge regions 
                flag = 1; 
                break 
            end 



            if (i < m && regions(i+1,j) ~= R && 

sum(eq(regions(i+1,j),added))==0) % check row below       
                added = [added, regions(i+1,j)]; 
                mask = (regions == regions(i+1,j)); 
                regions(mask) = R; 
                flag = 1; 
                break 
            end 
            if (j > 1 && regions(i,j-1) ~= R && sum(eq(regions(i,j-

1),added))==0) % check column to the left 
                added = [added, regions(i,j-1)]; 
                mask = (regions == regions(i,j-1)); 
                regions(mask) = R; 
                flag = 1; 
                break 
            end 
            if (j < n && regions(i,j+1) ~= R && 

sum(eq(regions(i,j+1),added))==0) % check column to the right 
                added = [added, regions(i,j+1)]; 
                mask = (regions == regions(i,j+1)); 
                regions(mask) = R; 
                flag = 1; 
                break 
            end 
        end 
    end 
    if (flag == 1) % break if a proposal is found 
        break 
    end 
end 

  
end 

 

%% Approximate Image 
% Description:  
%   Approximates an image based on regions and true image.  
%   Image approximation is done by averaging true image pixel values in  
%   each region. Time is saved by importing an already approximated image, 
%   only merging new regions. 
% Returns:  
%   approxImage = image approximation (double) 
% Arguments: 
%   r = current region 
%   proposedAdd = region of proposed merge 
%   regions = image of distinct region labels (double) 
%   approxImage = initial image approximation (double) 
% Dependencies: 
%   NONE 

  
function approxImage = approximate(r,proposedAdd,regions,approxImage) 

  
maskR = regions==r; % mask area of current region 
maskP = regions==proposedAdd; % mask area of proposed region 
mask = maskR | maskP; % create mask of combined region 
newMean = mean(approxImage(mask)); % calculate mean of combined region 



approxImage(mask) = newMean; % make new approximate image 

  
end 

 

 


