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Synopsis
It has been shown that vascular disease is strongly associated with Alzheimer’s disease (AD). It is thus important to establish normative cerebrovascular

hemodynamics in aging populations. In this study, we comprehensively assess macrovascular hemodynamics using 4D �ow MRI to obtain �ow rates and

pulsatility indices in 110 cognitively healthy, older adults and correlate these measures with age, sex, atherosclerotic cardiovascular disease (ASCVD) risk

scores, and APOE genotypes. We found a (1) negative correlation between �ow vs. age and �ow vs. ASCVD, (2) a positive correlation between pulsatility

vs. age and pulsatility vs. ASCVD, and (3) no correlations with APOE genotypes.

Introduction
Alzheimer’s disease (AD) is currently the sixth leading cause of death whose prevalence continues to grow due to demographic shifts and lack of

treatments . Recent evidence indicates that vascular pathology is a major risk factor for AD-related dementia with several studies indicating that it not

only contributes to cognitive decline but also to neuronal loss in AD-related Aβ and tau pathologies . Thus, there is considerable interest in de�ning

cerebrovascular biomarkers for prodromal and advanced AD. 4D �ow MRI enables a comprehensive assessment of intracranial hemodynamics in a

single, whole-brain acquisition. While several 4D �ow studies have investigated vascular dysfunction in AD , normal 4D �ow hemodynamic data in

healthy older subjects is lacking. The primary aim of this study is to evaluate normative hemodynamic measures (speci�cally �ow and pulsatility) in a

large cohort of cognitively normal subjects using 4D �ow MRI and to establish correlations with age, sex, atherosclerotic cardiovascular disease (ASCVD)

risk score , and APOE genotype.

Methods
In this preliminary study, a sub-cohort of 110 subjects (73F/37M; mean age=67y; age range=[46-81y]) were selected from a larger cohort of older,

cognitively normal subjects from the Wisconsin Alzheimer’s Disease Research Center. Inclusion criteria were de�ned as a normal cognitive status via

comprehensive clinical diagnosis and a Pittsburgh Compound B index < 1.19 . Demographics, ASCVD risk scores, and APOE genotypes were

obtained. 

4D �ow MRI data were acquired at 3T (Signa Premier, GE Healthcare, WI) using a radially-undersampled PCVIPR  acquisition with the following

parameters: TR/TE=7.7/2.5ms; �ip=8°; projections=11,000; isotropic resolution=0.69mm; image volume=22x22x10cm3; VENC=80cm/s; scan time=5.6

min; encode scheme=4-point. The data was reconstructed into 20 cardiac frames using retrospective peripheral pulse oximeter gating and temporal

radial view sharing . An interactive, semi-automated 4D �ow processing tool (Figure 1A-B, available on Github) was developed in Matlab2020b

(Mathworks, Natick, MA), which included automated vessel segmentation , centerline detection, and reporting functions for a robust and user-

independent analysis. Mean volumetric �ow rates and pulsatility indices (PIs) were obtained in 15 major vessel segments: cervical internal carotid

arteries (ICA), cavernous ICAs, vertebral arteries (VA), basilar artery (BA), middle cerebral arteries (MCA), posterior cerebral arteries (PCA), straight sinus

(StrS), superior sagittal sinus (SSS), and transverse sinuses (TS). Total cerebral blood �ow was computed as the sum of the cervical ICAs and BA. For

bilateral vessels, left and right segments were averaged. Two observers separately analyzed 55 cases each, using standardized vessel measurement

locations (Figure 1C). 

After 4D �ow hemodynamic data had been collected, two simple linear regression models were used to (1) assess correlations between each outcome

variable (�ow and PI in each vessel) and age as well as (2) each outcome variable and ASCVD score. Multiple linear regression was then used to assess

correlations between each outcome variable with age, sex, and age-sex interactions. Scatter plots were obtained for each regression model.

Results
All 110 subjects were successfully processed, with analysis taking approximately 9 minutes for each case. Box plots for blood �ow for all measured

vessel segments (and total cerebral blood �ow) are shown in Figure 2. Simple linear regression revealed that age is a predictor of decreased �ow and

increased PI in most vessel segments (Figure 3). For instance, age was positively correlated with �ow (p = 0.001) and negatively correlated with PI (p <

0.001) in the cavernous ICA. In the multiple regression analysis, age showed the same relationship with �ow and PI, but sex and the interaction between

age and sex did not correlate signi�cantly with �ow or PI. ASCVD score was also found to be a predictor of decreased blood �ow and increased PI for

most vessel segments (Figure 3-4). Finally, �ow and PI were not signi�cantly correlated with APOE genotype.

Discussion
It was observed that individual vessel �ow rates and total cerebral blood �ow decline with age (consistent with formerly published studies ), and that

pulsatility increases with age. However, it should be noted that there may be low statistical power due to the limited sample size used in this study.

Furthermore, blood �ow values align well with those reported in other MRI  and ultrasound studies. While APOE genotypes have been found to

di�erentially alter cerebral blood �ow using other MRI methods , this was not observed in our study. We plan to continue analyzing normal subjects,

providing a robust hemodynamic baseline. This is not only useful for future studies evaluating vascular dysfunction in mild cognitive impairment and AD

but any cerebrovascular-related study interested in normal �ow and pulsatility values.

Conclusion
This preliminary investigation represents a �rst step towards de�ning normal cerebral blood �ow and pulsatility values utilizing 4D �ow MRI, which

provides a sensitive, comprehensive and non-invasive tool for the assessment of cerebral luminal blood �ow and pulsatility. Normal �ow and pulsatility

value, as have been reported in this study, show correlations with age and vascular risk scores and are an important �rst step in de�ning normative

cerebral hemodynamics. Future studies will evaluate correlations with other vascular measures, such as white matter hyperintensities, as well as further

improve 4D �ow post-processing times.
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(A) Interactive 3D tool used to select speci�c vessels for hemodynamic analysis. Shown is the semi-transparent phase contrast angiogram and the

centerline skeleton color-coded by �ow. (B) Once a point is selected, cross-sectional planes show magnitude, velocity, complex di�erence data along

with �ow waveforms. (C) Established arterial measurement points used for this study. ICA=internal carotid artery; VA=vertebral artery; BA=basilar artery;

PCA=posterior cerebral artery; ACA=anterior cerebral artery; MCA=middle cerebral artery.

Box plots of mean volumetric blood rates in mL/s for all measured arteries (left), major sinuses (right), and total cerebral blood �ow (right). Note that

bilateral vessel segments were averaged between left and right sides. ICA cav = cavernous internal carotid artery; ICA cerv = cervical internal carotid

artery; MCA = middle cerebral artery; ACA = anterior cerebral artery; PCA = posterior cerebral artery; BA = basilar artery; VA = vertebral artery; SSS =

Superior Sagittal Sinus; StrS = Straight Sinus; TS = Transverse Sinus; tCBF = total cerebral blood �ow.

(Left) Correlations between age and each outcome variable after multiple linear regression with age, sex, and age-sex interaction terms. There were no

signi�cant correlations between sex or sex-age interactions with any outcome measure. (Right) Simple linear regression showing correlations between

outcomes and ASCVD vascular risk scores. ICA= internal carotid artery; MCA=middle cerebral artery; ACA=anterior cerebral artery; PCA=posterior

cerebral artery; BA=basilar artery; VA=vertebral artery; SSS=Superior Sagittal Sinus.

Relationship between �ow, pulsatility index and age. Linear regression showed that age is a predictor of decreased �ow and increased pulsatility index

in most vessels. (ß = regression coe�cient; p = p-value for ß; level of signi�cance p < .05).
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Simple linear regression plots demonstrating negative correlation between ASCVD risk score and �ow (left) and positive correlations between ASCVD risk

score and pulsatility indices (right). Note that ASCVD risk scores were log-normal distributed, resulting in a large number of small ASCVD values.

ICA=internal carotid artery; ASCVD=atherosclerotic cardiovascular disease (risk score).
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