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Abstract—Accurate segmentation is critical for the quantifica-
tion of structural and temporal characteristics of biofilm cultures
and is of particular importance when monitoring a biofilm’s
response to antibiotic treatment regimens. However, the large size
of light microscopy images, as well as the large number of images
that may be needed for proper cell-tracking over multiple biofilm
strains, warrant automated means of segmentation to expedite
post-processing and increase segmentation repeatability. In this
study, a fully-convolutional neural network with U-Net archi-
tecture was trained to segment Pseudomonas Aeruginosa biofilm
images using a total of 60 training and 10 validation datasets. This
deep learning approach was compared to a “simple” manual seg-
mentation using multi-vertex polygon ROI tracing. Both methods
were compared to ground-truth biofilm images and quantitatively
assessed using dice coefficients and modified Hausdorff distances
to rate the efficacy of each method. Ground-truth images were
obtained by producing an approximate mask using various
morphological operations and by extensive manual fine-tuning
of edges. Intra-observer repeatability of simple segmentation and
ground-truth segmentation was assessed for 10 repeat datasets
using intraclass correlation coefficients. It was found that ground-
truth manual segmentation was extremely time-consuming, tak-
ing on average 23 minutes while simple segmentation took on
average 1 minute. Deep learning segmentation resulted in fairly
low accuracy, as measured by dice coefficients and Hausdorff
distances. Further studies utilizing different frameworks, better
computational resources, and augmented datasets are highly
warranted in order to provide increased accuracy of automatic
deep learning segmentation of biofilm images.

I. INTRODUCTION

Biofilms are large aggregations of microorganisms encased
in a matrix of extracellular polymeric substance that grows
on the surface of certain materials [1]. This complex grouped
structuring, described by some as a ”city for microbes”, allow
for efficient biochemical signaling and gene exchange and
provides protection against external stresses, increasing overall
cell survival rates [2]. Biofilms are extremely robust to external
stresses, capable of growing on many different surfaces and
showing resistance towards some forms of antibiotics and
detergents, which is particularly problematic in the medical
context [3, 4]. These biofilm colonies can readily grow on
surgical equipment and soft tissue wound infections, with
some data suggesting that they may account for approximately
two-thirds of chronic microbial infections [5, 6]. Treatment or
removal of biofilms, whether in-vivo or ex-vivo, is exception-
ally difficult and often involves a regimen of multiple forms
of high-strength antibiotics due to a lack of knowledge of
the exact bacterial strain present and the degree of antibiotic

resistance. While conventional antibiotic resistance (associated
with evolutionary adaptation towards antimicrobials) may play
a role in limiting the treatment efficacy of antibiotics, evi-
dence is beginning to suggest that it may be more related to
inherent, multi-layered stress responses (formation of persister
cells, nutrient limitation, slow growth, etc.) within the biofilm
[7]. However, these adaptive defense mechanisms are still
poorly understood. In order to develop more targeted treatment
strategies, it is thus imperative to prospectively characterize
the morphological and functional responses that occur during
antibiotic challenges.

To better understand structural and temporal changes of
biofilms in response to antibiotic challenges, microscopy
techniques (namely optical microscopy and confocal laser
scanning microscopy) have been used to obtain high-resolution
digital images of live bacteria strains grown on hard agar plates
[8, 9]. This high-resolution imaging can allow for accurate
tracking of morphological changes over time and can allow for
visual differentiation in gene content and expression amongst
various biofilm strains. In order to perform data analysis,
accurate image segmentation of the biofilm is required. This
segmentation is commonly performed using several software
platforms, which rely on either manual thresholding [10, 11]
or automatic thresholding [12-14] to differentiate between
regions of biofilm and agar background. Both approaches are
prone to error, as manual thresholding may produce subjective
results and show poor repeatability and automatic thresholding
may be negatively influenced by erroneous pixels, artifacts,
and differences in background lighting [14, 15]. Deep learning
has emerged as a compelling approach to segment biomedical
images, as well as biofilms, using trained convolution neural
networks [16, 17].

In this paper, a fully-convolution neural network with U-
Net architecture will be used to automatically segment Pseu-
domonas Aeruginosa biofilm images. The accuracy of this
technique will be compared to a “simple” manual segmen-
tation technique, in which multi-vertex polygons are drawn
around the biofilm to quickly create a crude ROI. While the
simple segmentation will include the entirety of the biofilm,
the edge structures, which may contribute a significant amount
of area, will not be accounted for. Thus, it is hypothesized
that the U-Net segmentation scheme will provide a robust
means to accurately segment biofilms and preserve complex
edge structures. If successful, this method would allow for



fast and formidable segmentations with increased repeatability,
reproducibility, and accuracy of biofilm measurements, neces-
sary for the characterization of the complex functional and
structural changes of biofilms that may occur under the stress
of antibiotic treatments.

II. DATA

A total of 266 two-dimensional (2D) color (3-channel RGB)
digital JPEG images were downloaded from a shared online
folder. This dataset contained 69 different strains, each strain
containing 3-4 images obtained at different time points after
the administration of antibiotics. Due to the time-consuming
nature of manual segmentation required for ground-truth mea-
surements, only 70 of these images were used for analysis.
This sub-dataset contained 18 different strains; 16 strains
contained 4 time-series images while 2 strains contained 3
time-series images (total 70 images). Color images in the
sub-dataset varied in file size (mean: 28.3 MB; range: [8.27-
62.9] MB) and dimension (mean: 7155x7721x3 pixels; range:
[4440-13080] x [5376-14016] x 3 pixels). A representative
biofilm image from the sub-dataset is shown in Figure 1.
MATLAB 2020a (Mathworks, Natick, MA, USA) was used to
import and manipulate raw images. All images were converted
to a standardized size of 8192x8192 prior to manual, simple,
and U-net segmentation.

Fig. 1: Figure 1: (A) Stained microscopy image of biofilm culture on agar
plate. (B) Multi-vertex polygon ROI traced around biofilm boundary. (C) Man-
ual segmentation of biofilm using free-hand region of interest (ROI) tracing.
(D-F) Zoomed images of biofilm boundaries, with associated segmentation
ROIs.

Simple segmentation masks were performed on all 70
datasets. Masks were subsequently saved as 8192x8192 binary
8-bit TIF files. TIF files were used because it was noted that
JPEG files resulted in lossy compression; while the image ap-
peared binary, closer inspection revealed that pixels were non-
binary grayscale. Manual segmentation ground-truth masks
were created for all 70 datasets and were subsequently saved
as 8192 x 8192 binary 8-bit TIF files. For U-Net segmentation,
60 images (85%) were assigned as training datasets and the
remaining 10 images (15%) were delegated for validation.

III. METHODS

Manual Segmentation: Manual segmentation masks were
created for ground-truth images, used for quantitative segmen-
tation performance evaluation and U-Net training. Initially,
the raw color images were converted to grayscale, as was
done for simple segmentation. A second gradient magnitude
image was then obtained by convolving the grayscale image
with a 3x3 Sobel gradient kernel and taking the magnitude
of all pixels. A third image was created by taking the log
of gradient magnitude image and performing a subsequent
Wiener smoothing filter to mitigate noise in the background
regions caused by the log operation. All three images were
then resized from the initial image dimensions to the standard-
ized size of 8192x8192. Two separate methods were used to
create an initial mask depending on the image characteristics
of the gradient and log-gradient image. If the gradient image
showed good delineation of the biofilm boundary, then a
manual threshold was used to include only the edge and center
of the biofilm, as these regions showed more image variation
(as opposed to the slowly varying background region). This
method was used on 45 (of the 70 total datasets). If the log-
gradient showed a better delineation of the biofilm boundary,
a flood-fill operation was performed on the interior of the
biofilm. This method was used in 25 of the datasets. After
creation of the initial mask, holes inside of the biofilm and
small regions of active pixels outside of the biofilm still
existed. To create a uniform mask, holes (areas of nonactive
pixels surrounded completely by active pixels) were filled
using a built-in hole-filling algorithm. Next, a small line of
active pixels was created, leading from the edge of the image
to the center of the biofilm, and the mask was inverted. The
line was drawn because, after inverting the mask, the central
region (biofilm) would often become filled after performing the
hole-filling operation due to (now active) background pixels
surrounding the central region. The artificial line created a
non-active pixel channel, forcing the central region to not
be completely enclosed while still filling in noise holes in
the background region. The artificial line was then removed
through manual segmentation. Finally, the mask was inverted
again, leaving a mostly uniform mask with no holes or noisy
background spots. This procedure is visually shown in Figure
2. A morphological opening operation, utilizing a disk of
radius 3 pixels, was performed to connect disjointed regions
near the edge of the biofilm. Despite this, crevices within
the edge structure were often filled and certain regions of
low edge contrast were poorly segmented. Because of this,
manual fine-tuning of the edge was performed using a free-
hand ROI tracing. This procedure was performed on all 70
images in the sub-dataset by an imaging scientist with 3+ years
of experience in image segmentation and image processing. A
manually segmented image is shown in Figure 1.

Segmentation: A simple segmentation procedure, utilizing
a multi-vertex polygon region of interest (ROI) tracing, was
performed in the Image Segmentation Toolbox in MATLAB
2020a. This segmentation was intended to be quick and crude,



Fig. 2: Figure 2: Pre-processing procedure performed before manual seg-
mentation to create uniform ROI without holes or noise spots. Hole-filling
is first performed on the manually-thresholded or flood-filled biofilm area.
Immediately after this, an artificial line is drawn from the biofilm ROI to
the image edge. Next, the image is inverted and the hole-filling operating
is performed again, removing noise pockets in the background region. The
artificial line that was drawn creates a disconnect within the background
region, which allows hole-filling to not fill the main biofilm area. Lastly,
this artificial line is removed by manual segmentation.

with little attention given to the high-detail boundaries. Before
simple segmentation was performed, all images were con-
verted to grayscale by weighting the red component by 0.2989,
the green component by 0.5870, and the blue component by
0.1140 and summing the respective channels. The black-white
image was then loaded from the workspace into the toolbox,
and an ROI was contoured around the biofilm. The number
of vertices used, as well as the time required to produce the
ROI, was recorded. This procedure was performed on all 70
images in the sub-dataset by the same user. A representative
multi-vertex polygon ROI is shown in Figure 1.

Fig. 3: Figure 3: A MATLAB plot of the U-Net architecture diagram used in
this study.

U-Net Segmentation: A U-Net architecture was constructed
in MATLAB 2020a using the Computer Vision and Deep
Learning Toolboxes. Specifically, the function ‘unetLayers’
was used to construct this architecture, shown in Figure 3.
It was fully convolution, utilizing an encoding depth of 3,
mini-batch size of 8, with color image input and binary (two-

class) output. Due to the large image sizes, image patches
of size 256x256 were randomly extracted from the training
and validation images and were fed into the network input.
A cross-entropy loss pixel classification layer was used as the
final layer in the network. A piecewise learning rate schedule
was used, with an initial learning rate of 5e-04, learning
rate drop period and drop factor of 5 and 0.95, respectively.
Training progress was plotted in a graphical user interface,
shown in Figure 4. The network was trained over 20 epochs
with validation occurring every 400 iterations. Due to limited
computing resources, training was performed remotely on a
Dell Precision 5820 Tower (Intel Xeon W-2123 3.60 GHz
CPU, 32 GB RAM, NVIDIA GeForce GTX 750 Ti GPU
[Nvidia Corporation, Santa Clara, CA, USA] with 2 GB
memory and 1020 MHz core speed). Lastly, segmentation
prediction outputs from the network were post-processed to
remove checkerboard pattern artifacts visible on some images,
as well as disjointed boundary regions, leading to the final
segmentation image. This procedure was performed on all 70
images in the sub-dataset and the subsequent masks were saved
as TIF files.

Fig. 4: Figure 4: A built-in MATLAB graphical user interface (GUI) of the
training progression. The top graph depicts the accuracy of the training data
relative to ground-truth segmentations, and the bottom graph depicts the loss
function over each iteration. The sidebar on the right shows what stage of the
training you are in, computational resources that are utilized, as well as the
total time-elapsed.

Image Analysis: Dice coefficients were used to compare
segmentation accuracy between the simple and U-net segmen-
tation methods, relative to the ground-truth manual segmenta-
tions. An additional accuracy metric, the modified Hausdorff
distance (MHD), was calculated for both the simple and U-Net
segmentations relative to ground-truth. Due to the use of max
and min functions in the original Hausdorff distance measure,
the presence of a single noisy outlier can drastically change
the Hausdorff measurement, limiting its practical applications.
The ‘modified Hausdorff distance’ overcomes this problem
and was shown to perform well even in noisy datasets [18].
Average area measurements (reported as a percentage of total
area) were calculated for all simple, U-Net, and manual
segmentations.

Repeatability Analysis: Ten repeat manual and simple seg-



mentations were performed by the same user 2 days after the
initial segmentation to assess intraobserver repeatability. Intr-
aclass correlation coefficients were used as a metric to asses
repeatability for both the manual and simple segmentation
methods, using a significance level of 0.05. Furthermore, Dice
coefficients between the two measurements were calculated
between the initial and repeat segmentations.

IV. EXPERIMENTS

Seventy images were successfully segmented for all tech-
niques and were saved as binary masks. Additionally, a deep
learning model was successfully trained on these datasets with
segmentation prediction masks obtained. Figures 5-7 show a
simple, U-Net, and manual segmentation of several biofilm
images. Quantitative segmentation performance results for the
simple and U-Net segmentation methods are reported in Table
1. The times required for segmentation are also reported in
this table.

Fig. 5: Figure 5: Biofilm (Strain 1) showing simple, U-Net, and manual
segmentations. The bottom images show a close up of the biofilm boundary.

Manual Segmentation: While the initial mask created using
morphological operations did a good job at creating an accu-
rate segmentation, certain regions on the edge of the biofilm
were often disjointed and noisy. While morphological opening
addressed these issues, it also removed the true edge in areas
of low image contrast. Performing manual trimming helped
create accurate tracing around the edges. However, this process
was extremely time-consuming, requiring on average 23.7 ±
10.2 minutes per dataset. Intraobserver repeatability of the 10
repeat manual segmentations was particularly high, with an

Fig. 6: Figure 6: Biofilm (Strain 25) showing simple, U-Net, and manual
segmentations.

Fig. 7: Figure 7: Biofilm (Strain 41) showing simple, U-Net, and manual
segmentations.

average dice coefficient of 0.9984 ± 0.0019 and an intraclass
correlation coefficient of 0.9995.

Simple Segmentation: Segmentation difficulty increased
moderately when images with non-smooth edges were pre-
sented, increasing both the number of vertices and time
required to process the image. Images were segmented at
full scale, leading to difficult visualization of the true biofilm
boundary in some datasets. However, the average time to
trace the polygon ROI was still quite fast, requiring on
average 73.2 ± 21.2 seconds and an average of 87.4 ± 26.5
vertices. While it was initially hypothesized that the simple
segmentation would result in poor segmentation accuracy, the
simple segmentation actually outperformed the deep learning
segmentation on all metrics. Furthermore, intraclass corre-
lation coefficients were 0.9975 for the 10 repeated simple
segmentations, indicating very high intraobserver repeatability
for this method. Dice coefficients between the initial and repeat
segmentation masks also indicated very high repeatability
with an average coefficient of 0.9929 ± 0.0026. While the
segmentation accuracy and repeatability were high (relative to
the U-Net segmentations), the true edge boundaries were not
well preserved.



U-Net Segmentation: The total time to train the network
took approximately 5 hours to complete. This made testing
of different parameters and layers extremely difficult, which
is likely a reason why the performance of the deep learning
segmentation was lower than the simple segmentation. Upon
initial training, the ground-truth masks were saved as JPEG
files. However, as noted above, saving the masks as JPEG files
resulted in lossy compression, causing the binary masks to be
non-binary in certain areas, causing the training accuracy to be
greatly decreased. Manual segmentations were then saved as
TIF files, which maintained the binary nature of the ground-
truth masks and resulted in much higher training accuracy.
Segmentation accuracy, as measured by Dice coefficients and
modified Hausdorff distances were quite low. Qualitatively,
many of the segmentation masks produced could not detect
low contrast edges. Therefore, in many of the U-Net produced
masks, there exist large fragmented edge regions. It was
also noted that in some instances (N=6), the segmentation
prediction resulted in a mask that covered the entire image. In
these images, the luminance was quite low, and the background
region contained large artifacts. Despite this, the time to
perform segmentation after network training was relatively
fast, taking approximately 90 seconds.

Limitations: While the manual segmentations were per-
formed by a user with experience in image segmentation
and image processing, further validation of the ground-truth
images should be performed by a microbiologist specializing
in this field. For instance, in some image datasets, a very low
contrast, rough edge was observed to exist outside of a higher
contrast smooth edge. It is unclear whether this outer rough
edge is truly the biofilm boundary or an extension of the extra-
cellular polymeric substance matrix. Due to a lack of access to
high computing power machines, training of the network was
slow and required a great deal of modifications to reduce the
memory load. Using multiple GPUs with greater processing
capabilities would likely expedite the training process, allow-
ing for more parameters to be changed and leading to overall
improved accuracy. Additionally, this would result in increased
memory, which could allow for loading in patches of larger
sizes which may further improve the accuracy. Due to time
limitations, data augmentation was not used. However, this
approach would provide more datasets for training and would
likely improve results. It is also theorized that adding further
dimensionality to the color images, such as adding the gradient
magnitude or log-gradient magnitude images in the fourth
dimension may also lead to better segmentation predictions, as
these images highlight biofilm boundaries quite well. Lastly,
all images were resized to 8192x8192 to standardize resolution
which led to decreased resolution through downsampling in
some image datasets.

V. CONCLUSIONS

The accurate segmentation of biofilms is a difficult process;
however, it is necessary in order to quantitatively characterize
the complex functional and structural changes that occur under
the stress of antibiotic treatments. While a previous study

demonstrated high accuracy of biofilm image segmentation
using a U-Net architecture, the U-Net segmentation in this
study performed quite poorly. In fact, the simple segmentation
method, in which polygons were manually traced around the
biofilm, showed higher accuracy. The decreased performance
is likely due to several factors, including lack of proper
computation resources needed for fast training, as well as a
low number of training datasets. Fortunately, these factors can
be addressed through the use of high-power GPUs and data
augmentation techniques, allowing for more datasets to be
tested without having to perform tedious manual segmentation.
To conclude, while this study demonstrated showed poor
performance of the U-Net segmentation, much more extensive
testing, training, and a carefully crafted neural net architecture
would likely greatly increase the accuracy of this segmentation
method, which would provide a highly repeatable means to
segment biofilm cultures.
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