Free-Breathing Radial 2D Phase Contrast MRI for Aortic Pulse Wave Velocity Measurements in Healthy Older Adults

<u>Grant S. Roberts¹</u> Kevin M. Johnson^{1,2} Leonardo A. Rivera-Rivera² Steven R. Kecskemeti² Ozioma C. Okonkwo³ Laura B. Eisenmenger² Oliver Wieben^{1,2}

Medicine³

University of Wisconsin-Madison, Dept. of: Medical Physics¹ Radiology²

Slide 1 of 12

Background: Pulse Wave Velocity (PWV)

- Pulse wave velocity (PWV)
 - Defined as the rate at which pulse pressure propagates through a vessel
 - Indirectly related to vessel stiffness¹
 - Early indicator of CV disease

¹Calvacante, JL, et al. *J Am Coll Cardiol*. 2011; 57:1511–22

Background: Pulse Wave Velocity (PWV)

- Many studies on PWV and CV disease incidence²
- Clinically assessed with applanation tonometry
 - Easy and inexpensive
 - Carotid-femoral (caPWV) or brachial-ankle (baPWV)
 - Distances are approximated
 - Leads to PWV error³

From: J Sugawara and H Tanaka. Pulse (Basel). 2015; 3(2).

²Kim, HL, et al. *Front Cardiovasc Med.* 2019; 6(40) ³Rajzer, MW, et al. *J Hypertens.* 2008; 26(10):2001-07

Background: MRI-based PWV

- MR can also be used to assess PWV (usually aortic)
 - Often requires breath-holds (BHs)
 - May be difficult/impossible for some patients

We present a method to measure aortic PWV using a free-breathing (FB) radial 2DPC sequence

Slide 4 of 12

Methods: Acquisition

- A <u>radial FB 2DPC</u> sequence was implemented and <u>compared to a</u> <u>Cartesian BH 2DPC</u> (GE) at 3T
 - Parameters matched
 - 18 subjects (13F, mean age=57)
- 2 axial planes
 - Aortic arch and abdominal aorta
 - 3 ROI measurements total
- bSSFP images were acquired for aorta centerlines (scan time = 15s)

Parameter	Free-Breathing Radial	Breath-Held Cartesian
Scan time	2:27	0:13
Projections	10,000	N/A
# Frames	40	40
Slice Thickness	6 mm	6 mm
V _{enc}	150 cm/s	150 cm/s
Cardiac Gating	Retrosp. PG	Prosp. PG
Resp. Gating	Retrosp. Bellows	N/A
Spatial Res.	1.40 mm ²	1.41 mm ²
Temporal Res.	15-33 ms	15-33 ms

Methods: Sub-sampling + Local Low Rank Reconstruction

- Radial scans were retrospectively subsampled to 2,500 projections
 - Corresponding to 0:37 scan time
- A local low rank reconstruction was used to improve image quality.

$$\hat{\mathbf{x}} = \min_{\mathbf{x}} \left[\|\mathbf{A}\mathbf{x} - \mathbf{k}\|_{2}^{2} + \sum_{b} \lambda_{b} \|\mathbf{R}_{b}\mathbf{x}\|_{*} \right]$$

WISCONSIN-MADISON

Methods: Post-Processing

- Circular ROIs manually drawn around vessels (3 measurements total)
 - Flow waveforms smoothed with Gaussian filter
- TT-foot, TT-upstroke, TT-point, and cross-corr. methods were used⁴
- Centerlines drawn manually from the bSSFP and fit to a 3D b-spline
- Measured time shifts were plotted against centerline distances
 - Linear regression was used to fit the 3 data points
 - Inverse of the fitted slope is PWV

Results: Local Low Rank Reconstruction

,00

Results: Radial vs. Cartesian

- No significant differences between FB radial and BH Cartesian
 - 10,00 radial → Cartesian: p=0.58
 - 2,500 radial → Cartesian: p=0.97
- No significant differences in variance were found (all p>0.4)
- Mean PWV (±standard deviation) for each acquisition are:
 - BH Cartesian: 7.90 ± 4.88 m/s
 - FB Radial (10,000): E7.85 ± 4.07 m/sCONSIN-MADIS
 - FB Radial (2,500): 9.46 ± 6.03 m/s

Radial 10.000

Cartesian

Radial 2.500

Results: Radial vs. Cartesian

- Moderate, positive correlation between age and aortic PWV
- Other studies have demonstrated this relationship⁵

0

Discussion

W

- FB PWV measures were comparable to BH Cartesian PC scans
 - Demonstrates feasibility of FB acquisitions for PWV assessment
- Useful for PWV assessment in populations with breath-hold difficulty
- Local low rank reconstructions can be used to reduce scan time, improve image quality, or increase temporal resolution
- Validation studies are needed to compare acquisitions to ground-truth

From: Zimmerman, J, et al. Proc Intl Soc Mag Reson. Med 28. 2020; #2280.

Slide 12 of 12

Acknowledgements

UW CVMR Team:

Oliver Wieben, PhD Laura Eisenmenger, MD Kevin Johnson, PhD Leonardo Rivera-Rivera, PhD Carson Hoffman, PhD Phillip Corrado, MS Dan Seiter, MS Ruiming Chen, BS Alexander Niver, BS Alma Spahic, BS Archana Dhyani

Okonkwo Lab:

Ozioma Okonkwo, MD Sarah Lose, MS Alexandri Moellner, MPH

Waisman Center:

Steve Kecskemeti, PhD Ronald Fisher, BS

Financial Support: We receive financial and research support from GE Healthcare.

