Defining Normative Cerebral Hemodynamics in Cognitively Healthy Older Adults with 4D Flow MRI

<u>Grant S. Roberts</u>¹, Anthony Peret², Carson A. Hoffman², Leonardo A. Rivera-Rivera^{1,3}, Karly A. Cody³, Howard A. Rowley², Oliver Wieben^{1,2}, Sterling C. Johnson³, Kevin M. Johnson^{1,2}, & Laura B. Eisenmenger²

University of Wisconsin – Madison: Dept. of ¹Medical Physics, ²Radiology, ³Medicine

JOINT ANNUAL MEETING ISMRM-ESMRMB ISMRT 31ST ANNUAL MEETING

07-12 MAY 2022 LONDON, ENGLAND, UK

A HYBRID EXPERIENCE

Declaration of Financial Interests or Relationships

Speaker Name: Grant S. Roberts

I have the following financial interest or relationship to disclose with regard to the subject matter of this presentation:

Company Name: GEJHealthcareY OF WISCONSIN-MADISON Type of Relationship: Institutional Research Support (UW-Madison)

Background

Courtesy: Leonardo Rivera-Rivera, PhD

¹Mitchell GF, et al (2011). *Brain* 134(11). ²Tarantini S, et al (2017). *Exp Gerontol* 94. ³Rivera-Rivera LA, et al (2016). *JCBFM* 36(10). ⁴Rivera-Rivera LA, et al (2017). JCBFM 37(6).
⁵Rivera-Rivera LA, et al (2020). NeuroImage Clin 28.
⁶Clark LR, et al (2017). Alzheimers Dement 7.

Background

- 4D flow MRI is a comprehensive vascular imaging technique
 - Post-processing is still a challenge
- We developed a cranial 4D flow analysis tool^{1,2}
 - Open Source: <u>https://github.com/uwmri/OVT</u>
 - Added visualization tools
 - Interactive vessel selection ~

Control Window

4D Flow Visualization Tool

- This tool will then be used to analyze 4D flow data from 759 older adults:
 - <u>Aim 1</u>: Obtain reference values for (1) blood flow and (2) pulsatility in 13 major cerebral arteries and 4 major sinuses
 - <u>Aim 2</u>: Assess the relationship between age, sex, and ASCVD vascular risk scores on blood flow and pulsatility

Methods – Subjects

- Subjects retrospectively obtained from:
 - Wisconsin Alzheimer's Disease Research Center (ADRC)
 - Wisconsin Registry for Alzheimer's Prevention (WRAP)
 - Between March 2010 March 2020
- Exclusion criteria:
 - Abnormal cognitive status
 - PiB index $> 1.19^1$
 - Image quality and cardiac gating quality
- Take only most recent 4D flow MRI
- 759 subjects (mean age 65 years)
 - Some measures deviate from "normal"
 - Sex (67% females)
 - **APOE4** carriers
 - Parental history of dementia

ely obtained from:	Subject demographics			
r's Disease Research Center (ADRC)		Count (n)	Percent (%)	N *
or Alzheimer's Prevention (WRAP)	Sex			759
	Female	506	66.7	
0 – March 2020	Male	253	33.3	
	White	645	85.3	/5/
	Black or African American	82	10.7	
status	American Indian	24	3.2	
	Asian	2	0.3	
	Other	4	0.5	
ardiac gating quality	Diabetes	63	9.1	689
	Smoker	29	4.2	689
nt 4D flow MIRI	On Anti-hypertensive Meds	240	34.8	689
	Parental history of dementia	500	67.6	740
age 65 years)	APOE e4 carrier**	247	35.6	694
ate from "normal"		Mean	SD	N *
	Age (years)	64.7	7.7	759
	Systolic Blood Press. (mmHg)	125.1	16.4	751
UNIVERSITI OF WISCONSI	Diastolic Blood Press. (mmHg)	76.9	8.3	751
ementia	Total Cholesterol (mg/dL)	199.0	39.4	744
	Triglycerides (mg/dL)	106.4	56 7	744

*Total number of measured data points over all subjects (759 total). **APOE £4 carrier defined as presence of at least one APOE £4 allele.

Methods – Acquisition

- Subjects scanned at 3.0T
 - 3 different GE scanners
- Radially-undersampled acquisition
 - $PCVIPR^{1,2}$
- Data reconstructed into 20 cardiac frames •
- Reconstruction •
 - Temporal view sharing
 - Parallel imaging with localized sensitivities
 - Maxwell term phase correction
 - 3rd order background phase correction

MI	RI Scanners and (Coils		
		Discovery MR750 (N=611)	Signa PET/MR (N=8)	Signa Premier (N=140)
MI	RI Coil Type			
M	48 channel	-	-	140
	32 channel	565	-	-
	8 channel	46	8	-

	MRI Acquisition Paramet	ers
ing	Characteristic	Value
th localized sensitivities	TR (ms)	7.71
e correction	TE (ms)	2.63
	Flip Angle (degrees)	8
d phase correction	Matrix Size	320
	Resolution Size (mm)	0.69
	Radial Projections	11000
UNIVERSITY OF WISCO	VENC (cm/s)	SO 80
	Encoding Scheme	4-point (58%)
		5-point (42%)
	Scan Time (min)	5.6 (58%)
		7.1 (42%)

Methods – Post-Processing

- Hemodynamic Measures
 - Volumetric flow rates (mL/min)
 - **Pulsatility indices** (a.u.)
 - $PI = (v_{max} v_{min})/v_{mean}$
- Vessel Segment Locations
 - 13 arteries + 4 veins

Vessel	Measurement Criteria
Total Cerebral Blood Flow (TCBF)	LICA + RICA + BA
Cervical ICA (x2)	C1 segment (1-10 CL points from end of vertical portion)
Cavernous ICA (x2)	C3 segment (1-10 CL points from end of vertical portion)
Middle Cerebral Artery (x2)	Middle M1 ± 5 CL points
Anterior Cerebral Artery (x2)	Middle A1 ± 5 CL points
Basilar Artery	10 \pm 5 CL points superior from BA-VA junction
Vertebral Artery (x2)	10 ± 5 CL points inferior from BA-VA junction
Posterior Cerebral Artery (x2)	5-10 CL points before P1-P2 junction
Superior Sagittal Sinus	15 ± 5 CL points from SSS-TS-SS junction
Straight Sinus	15 ± 5 CL points from SSS-TS-SS junction
Transverse Sinus (x2)	15 ± 5 CL points from SSS-TS-SS junction

Results – Analysis

- All 759 cases were successfully analyzed
 - Observer 1 = 302 cases (40%)
 - Observer 2 = 457 cases (60%)
 - Approximately 5 minutes per case
- Aliasing? \rightarrow Laplacian unwrapping¹
- Poor Segmentation? → manual segmentation

illy analyzed							
any analyzed		0	bserve	ed	Un	resolv	red
	Vessel	ALI	SEG	NV	ALI	SEG	NV
	ICA_C1	0	1	2	0	0	-
	ICA_C3	1	4	1	0	0	-
r case	MCA	212	1	21	51	0	-
rapping ¹	ACA	116	34	72	22	0	-
Tapping	BA	4	3	2	0	0	-
ual segmentation	VA	6	17	125	0	1	-
0	PCA	7	7	15	0	6	-
	SSS	2	1	7	0	0	-
	STR	5	1	6	0	0	-
	TS	1	1	199	0	0	-
IS(C)NS							

UNIVERSITY OF WISCONSIN-MADISON

Results – Intra-observer Agreement

- Observer 1 re-analyzed 30 cases
 - 1 month between analysis
- Excellent reliability in 32/34 flow and pulsatility measures
 - Basilar artery and right VA only <u>moderat</u>e reliability for pulsatility

UNIVE

-5	Volumetric Flow Rates (mL/min)							Pulsatility Indices (a.u.)					
	Vessel Segment	N	r	ICC*	Bias	Upper LOA	Lower LOA	r	ICC*	Bias	Upper LOA	Lower LOA	
DW	LICA_C1	30	0.995	0.997	0.932	-8.124	9.988	0.973	0.986	-0.004	-0.098	0.089	
	RICA_C1	30	0.996	0.998	0.171	-8.494	8.835	0.97	0.98	-0.009	-0.123	0.105	
	LICA_C3	30	0.993	0.997	0.007	-10.934	10.948	0.93	0.964	0.006	-0.134	0.145	
	RICA_C3	30	0.9 9 7	0.998	-0.539	-9.114	8.036	0.892	0.927	-0.041	-0.188	0.106	
ty	LMCA	30	0.998	0.999	-0.296	-4.276	3.683	0.94	0.968	0.016	-0.139	0.171	
	RMCA	29	0.999	1	0.127	-1.943	2.196	0.992	0.99	0	-0.179	0.179	
	LACA	29	0.999	1	-0.103	-2.126	1.921	0.997	0.997	-0.012	-0.125	0.1	
	RACA	30	0.993	0.996	1.365	-4.282	7.012	0.937	0.968	0.005	-0.142	0.153	
	BA	30	0.99	0.995	0.271	-6.442	6.983	0.49	0.623	-0.038	-0.541	0.465	
	LVA	30	0.991	0.995	-0.102	-7.434	7.229	0.933	0.966	-0.009	-0.207	0.188	
	RVA	29	0.991	0.996	0.558	-5.952	7.069	0.555	0.545	0.075	-1.061	1.211	
	LPCA	30	0.944	0.971	0.623	-5.971	7.217	0.871	0.931	-0.022	-0.278	0.233	
	RPCA	30	0.985	0.993	0.312	-3.71	4.334	0.903	0.948	0.004	-0.161	0.169	
RSITY	Osss	30	0.997	0.998	-0.03	8.12	8.059	0.922	0.951	-0.021	-0.159	0.116	
	STR	30	0.978	0.989	0.419	-6.942	7.78	0.87	0.931	-0.016	-0.238	0.207	
	LTS	24	0.999	1	0.788	-4.982	6.559	0.921	0.96	0.007	-0.222	0.236	
	RTS	29	1	1	0.079	-5.787	5.945	0.953	0.976	0.007	-0.122	0.135	

*ICC(3,k) - Two-way mixed-effects model, absolute agreement, mean of measurements

Results – Inter-observer Agreement

UNIVEF

- Observer 2 analyzed same 30 cases
 - 1 month between analysis
- Excellent reliability in 32/34 flow and pulsatility measures
 - Right VA and left transverse sinus <u>moderate</u> reliability for pulsatility

uses		\mathbb{O}	Volun	etric F	low Ra	tes (mL	./min)	Pulsatility Indices (a.u.)					
	Vessel Segment	N	r	ICC*	Bias	Upper LOA	Lower LOA	r	ICC*	Bias	Upper LOA	Lower LOA	
)W	LICA_C1	30	0.986-	0.992	2.979	-12.176	18.134	0.966	0.981	-0.019	-0.122	0.085	
	RICA_C1	30	0.993	0.996	0.498	-11.36	12.356	0.959	0.971	-0.034	-0.152	0.085	
	LICA_C3	30	0.987	0.993	1.745	-13.519	17.008	0.866	0.927	-0.01	-0.215	0.195	
IS	RICA_C3	30	0.98	0.987	5.039	-16.93	27.007	0.842	0.913	-0.01	-0.189	0.169	
y	LMCA	30	0.981	0.99	1.867	-11.762	15.495	0.829	0.902	0.027	-0.228	0.281	
	RMCA	29	0.993	0.996	1.233	-5.846	8.311	0.939	0.968	-0.041	-0.372	0.29	
	LACA	29	0.968	0.981	-2.843	-14.494	8.807	0.926	0.952	0.047	-0.371	0.465	
	RACA	30	0.945	0.972	0.27	-15.288	15.827	0.924	0.959	0.018	-0.139	0.175	
	BA	30	0.99	0.995	0.343	-6.346	7.033	0.943	0.971	0.005	-0.119	0.129	
	LVA	30	0.983	0.992	-0.206	-9.862	9.45	0.919	0.955	0.031	-0.18	0.241	
	RVA	29	0.986	0.993	1.213	-7.111	9.537	0.47	0.466	0.067	-1.123	1.256	
	LPCA	30	0.891	0.94	-0.202	-10.189	9.784	0.9	0.949	-0.007	-0.237	0.222	
	RPCA	30	0.94	0.969	-0.686	-8.785	7.412	0.843	0.908	-0.025	-0.267	0.217	
RSITY	Osss V	30	0.993	0.996	0.055	-11.954	12.064	0.971	0.985	-0.012	-0.098	0.075	
	STR	30	0.989	0.994	-0.737	-6.01	4.536	0.895	0.945	0.009	-0.192	0.209	
	LTS	24	0.996	0.998	2.223	-12.972	17.418	0. 77 8	0.86	0.05	-0.302	0.403	
	RTS	29	0.999	0.999	0.457	-11.045	11.959	0.886	0.941	0	-0.191	0.191	

*ICC(3,k) - Two-way mixed-effects model, absolute agreement, mean of measurements

Results – Blood Flow

Vessel Segments

Results – Vascular Pulsatility

Results – Blood Flow

- Conservation of flow
 - LVA + RVA \approx BA
 - Similar results for ACA + MCA ≈ ICA
- Flow and PI were significantly

Conservation of Flow - Posterior Circulation

v = -3.84 + 0.937 x $R^2 = 0.91$

Results – Flow vs. Age/Sex

Results – Flow vs. Age/Sex

Flow ~ Age + Sex + (1 + Age | Vessel)

Linear Mixed-Effects Model - Flow vs. Age

Results – Pulsatility vs. Age/Sex

$PI \sim Age + Sex + (1 + Age | Vessel)$

Linear Mixed-Effects Model - Pulsatility vs. Age

Results – ASCVD

Discussion

- 4D flow MRI allowed for hemodynamic assessment in 17 vessels in 759 subjects
 - One of the most comprehensive intracranial flow studies
 - Possible with our semi-automated tool
- Flow decreases and pulsatility increases with increasing age
 - Contributing factors:
 - Decreased brain metabolism¹
 - Decreased parenchyma¹
 - Increased arterial stiffness²

• Flow decreases and pulsatility increases with increasing cardiovascular risk score

UNIVERSITY OF WISCONSIN-MADISON

Reflects effect of systemic cardiovascular disease on neurovascular health

Conclusion

- Future studies will investigate how flow/pulsatility is related to:
 - APOE genotype
 - White matter hyperintensities
 - Other risk scores (Framingham risk score, LIBRA)
- First-step towards defining normal cerebral blood flow and pulsatility values in older adults
 - Determine abnormal hemodynamic ranges
 - Help power future neurovascular studies

UNIVERSITY OF WISCONSIN-MADISON

Acknowledgements

ADRC Vascular Team <u>Sterling Johnson, PhD</u> <u>Kevin Johnson, PhD</u> Jill Barnes, PhD <u>Leonardo Rivera-Rivera, PhD</u> <u>Karly Cody, MS</u> Mulan Jen, MS Brandon Fico, PhD Erin Jonaitis, PhD Rebecca Koscik, PhD Howard Rowley, MD Eisenmenger Group <u>Laura Eisenmenger, MD</u> <u>Anthony Peret, MD</u> Chenwei Tang, MS Wieben Group <u>Oliver Wieben, PhD</u> <u>Oliver Wieben, PhD</u> <u>Carson Hoffman, PhD (alumni)</u> Phil Corrado, MS Daniel Seiter, MS Ruiming Chen, BS Alma Spahic, BS Tarun Naren, BS

UW MRI Imaging Team Waisman Brain Imaging Team

