

Assessment of Cerebrovascular Disease and White Matter Neurite Density in Alzheimer's Disease

Grant Roberts¹, Leonardo Rivera-Rivera², Kevin Johnson^{1,3}, Sterling Johnson², Douglas Dean III^{1,4}, Andrew Alexander^{1,5}, Oliver Wieben^{1,3}, and Laura Eisenmenger³

University of Wisconsin – Madison: Dept. of
¹Medical Physics, ²Medicine, ³Radiology, ⁴Pediatrics, ⁵Psychiatry

UNIVERSITY OF WISCONSIN-MADISON

Abstract #0267

ISMRM & SMRT Annual Meeting & Exhibition

An Online Experience

15-20 May 2021

Declaration of Financial Interests or Relationships

Speaker Name: Grant S. Roberts

I have the following financial interest or relationship to disclose with regard to the subject matter of this presentation:

Company Name: GE Healthcare

Type of Relationship: NResearch Support ISCONSIN-MADISON

Background

- Alzheimer's disease (AD)
 - Aβ plaques and neurofibrillary tangles<
 - Cortical atrophy
 - Typically thought of as disease of grey matter
- However, white matter (WM) alterations also occur¹⁻⁴
 - Likely vascular-mediated
 - Disrupts brain microcirculation
 - Impaired clearance of waste products
- We have also shown vascular changes present in AD5-7

- 2. Agosta F, et al (2011). Radiology 258(3)
- 3. Slattery CF, et al (2017). Neurobiol Aging 57
- 4. Fu X, et al (2020). Clin Neuroradiol 30(3)
- 5. Rivera-Rivera LA, et al (2016). JCBFM 36(10)
- 6. Berman SE, et al (2015). Neuroimaging 1(4)
- 7. Rivera-Rivera LA, et al (2021). JCBFM 41(2)

Controls vs. AD

Adapted From: Fu X, et al (2020). Clin Neuroradiol 30(3)

From: Rivera-Rivera LA, et al (2020). JCBFM 41(2)

Background

Relationship between macrovascular flow and WM microstructure alterations is still unclear

- Goal:
 - Utilize 4D Flow MRI (cerebrovascular dynamics)
 - Utilize DTI NODDI (WM microstructure)
 - 20 AD and 41 cognitively normal (CN) subjects
- 1. Compare WM axon density between AD/CN groups
- 2. Correlate WM axon density with vascular measures
 - a. Carotid pulse wave velocity (stiffness)
 - b. Carotid pulsatility index (resistance)
 - c. Total cerebral blood flow

Image: Rivera-Rivera LA, et al (2016). JCBFM 36(10).

Patient Demographics

- 20 Alzheimer's disease subjects
 - Characterized as "dementia due to probable AD^{1,2}"
- 41 Cognitively normal subjects

	CN (N=41)	AD (N = 20)	p-value
Age (years)	74 ± 7	73 ± 9	0.96 ^a
Female (n, %)	23, 56.1	13, 65.0	0.58 ^b
Parental history of dementia (n, %)	1, 2.44	7, 35.0	0.001 ^b
APOE ε4 carrier (n, %)*	1, 2.44	6, 30.0	2.51e-04 ^b
SBP (mmHg)	132 ± 22	131 ± 19	0.78 ^a
DBP (mmHg)	78 ± 9	75 ± 6	0.23a
HR (bpm)	62 ± 9	60 ± 11	0.55 ^a
CN = cognitively normal: AD = Alzheimer's disease: ADOE = analineprotein E: SBD =			

CN = cognitively normal; AD = Alzheimer's disease; APOE = apolipoprotein E; SBP = systolic blood pressure; DBP = diastolic blood pressure; HR = heart rate

^aTwo sample t-test

^bFisher's exact test

Bold indicates statistical significance (p<0.05)

4D Flow Measurements

- Total cerebral blood flow (tCBF)
 - $tCBF = Flow_{ICA} + Flow_{BA}$
- Pulsatility index (PI)
 - Vascular resistance
- Pulse wave velocity (PWV)
 - Vascular stiffness
 - Local low rank reconstruction¹

MR Parameter	Value
Scanner	3.0T GE Discovery MR750
Coil	32 Channel Head
Sequence	PCVIPR ^{2,3}
Encoding Scheme	5-point balanced
Projections	11,000
TR	7.4 ms UNIVERSI
TE	2.7 ms
V _{enc}	75 cm/s
Resolution	0.7 mm isotropic
Cardiac frames	100

³Johnson KM, et al (2008). MRM 60(6).

Background · Methods · Results · Discussion

NODDI – Neurite Orientation Dispersion and Density Imaging

Fit DTI signal into 3 compartment model

1. Intracellular space (V_{ic})

- Highly-restricted diffusion
- Axons and dendrites
- Modelled as dispersed sticks
- 2. Extracellular space (V_{ec})
 - Hindered diffusion
 - Space between neurites
 - Modelled as dispersed cylinders
- 3. Cerebrospinal fluid (V_{iso})
 - Free diffusion
 - Modelled as isotropic Gaussian

NODDI – Neurite Orientation Dispersion and

Density Imaging¹

Neurite density index (NDI)

Orientation dispersion index (ODI)

Free water fraction (f_{fw})

MR Parameter	Value		
Scanner	3.0T GE Discovery MR750		
Coil	32 Channel Head		
Sequence	Spin-echo EPI		
Shells	$6 \times b=0 \text{ s/mm}^2$ $9 \times b=500 \text{ s/mm}^2$ $18 \times b=800 \text{ s/mm}^2$ $36 \times b=2000 \text{ s/mm}^2$		
Resolution	2 mm isotropic		
TR	8575 ms		
TE	76.8 ms JNIVERSITY		
Flip angle	8 degrees		

NODDI

Diffusion Tensor Data

- FSL/MRtrix
 - Denoise: dwidenoise
 - Remove Gibb's Artifact: *mrdegibbs*
 - Brain extraction: BET
 - Eddy current correction: *eddy*
 - Subject motion analysis: eddy_quad/eddy_squad
 - DTI Parameter Estimation: dtifit

- NODDI Matlab Toolbox
 - NDI maps

- FSL
 - Tract-based Spatial Statistics: tbss
 - Statistical Analysis: Glm (randomise)

TBSS Hypothesis Tests

- Are there differences in NDI Between AD and CN subjects?
- Are there correlations between PWV/PI/tCBF and NDI for AD and CN subjects?
- Post hoc analysis in significant tracts
 - ROIs identified with JHU WM atlas
 - Mean NDI values were extracted for each subject

Background · Methods · Results · Discussion

TBSS Hypothesis Tests

Compare NDI Between AD and CN

UNIVERS

CN NDI > AD NDI?

Similar results observed by Slattery et al¹ and Fu et al²

^{1.} Slattery CF, et al (2017). Neurobiol Aging 57

^{2.} Fu X, et al (2020). Clin Neuroradiol 30(3)

ROI Analysis

- CN NDI > AD NDI
- WM regions identified on TBSS using JHU WM atlas
- ANCOVA
 - Adjusted for age/sex
 - Corrected for multiple comparisons

	<u>.</u>
)	C
	C
1	C
1/1/	St
VVI	Si
	St
UNIVER	CITVS
ONIVEN	U

White Matter Regions Identified from TBSS (ICBM-DTI-81 Atlas Label #)	CN Mean NDI	AD Mean NDI	p-value	
Genu of Corpus Callosum (3)	0.526 ± 0.041	0.507 ± 0.047	0.1329	
Body of Corpus Callosum (4)	0.595 ± 0.028	0.573 ± 0.034	0.0137*	
Splenium of Corpus Callosum (5)	0.635 ± 0.031	0.597 ± 0.032	5.2e-05**	
Anterior corona radiata R (23)	0.473 ± 0.056	0.438 ± 0.054	0.0138*	
Anterior corona radiata L (24)	0.474 ± 0.053	0.429 ± 0.054	0.0019**	
Superior corona radiata R (25)	0.590 ± 0.046	0.556 ± 0.058	0.0113*	
Superior corona radiata L (26)	0.583 ± 0.048	0.541 ± 0.059	0.0024*	
Posterior corona radiata R (27)	0.512 ± 0.055	0.473 ± 0.063	0.0153*	
Posterior corona radiata L (28)	0.505 ± 0.054	0.467 ± 0.049	0.0104*	
Posterior thalamic radiation R (29)	0.515 ± 0.041	0.474 ± 0.041	3.9e-04**	
Posterior thalamic radiation L (30)	0.487 ± 0.048	0.438 ± 0.047	3.3e-04**	
Sagittal stratum R (31)	0.510 ± 0.030	0.492 ± 0.033	0.0558	
Sagittal stratum L (32)	0.487 ± 0.035	0.467 ± 0.038	0.0541	
External capsule R (33)	0.506 ± 0.030	0.485 ± 0.028	0.0075*	
External capsule L (34)	0.509 ± 0.026	0.483 ± 0.028	2.9e-04**	
Cingulate gyrus R (35)	0.536 ± 0.023	0.510 ± 0.022	7.8e-05**	
Cingulate gyrus L (36)	0.542 ± 0.024	0.510 ± 0.023	8.4e-06**	
Cingulum (hippocampus) R (37)	0.496 ± 0.029	0.463 ± 0.036	2.8e-04**	
Cingulum (hippocampus) L (38)	0.494 ± 0.022	0.469 ± 0.025	3.5e-04**	
Superior longitudinal fasciculus R (41)	0.592 ± 0.034	0.557 ± 0.056	0.0069*	
Superior longitudinal fasciculus L (42)	0.594 ± 0.038	0.552 ± 0.053	7.8e-04**	
Superior fronto-occipital fasciculus R (43)	0.557 ± 0.074	0.520 ± 0.061	0.0317*	
Superior fronto-occipital fasciculus L (44)	0,542±0:081	0.482 ± 0.070	0.0026*	
Uncinate fasciculus R (45)	0.485 ± 0.026	0.454 ± 0.032	2.9e-05**	
Uncinate fasciculus L (46)	0.484 ± 0.027	0.451 ± 0.022	1.6e-05**	
Abbreviations: NDI=neurite density index: AD=Alzheimer's disease: CN=cognitively normal:				

Abbreviations: NDI=neurite density index; AD=Alzheimer's disease; CN=cognitively normal; TBSS=tract-based spatial statistics; R=right; L=left

^{*}p-values <0.05; **p-value<0.002 (Bonferroni correction for 25 ROIs).

TBSS Hypothesis Tests

Compare NDI Between AD and CN

• CN NDI > AD NDI?

- Correlation PWV and NDI
 - No significant findings
- Correlation PI and NDI
 - No significant findings

TBSS Hypothesis Tests

Compare NDI Between AD and CN

CN NDI > AD NDI?

- Correlation PWV and NDI
 - No significant findings
- Correlation PI and NDI
 - No significant findings
- Correlation tCBF and NDI
 - CN $\beta_{tCBF} \neq 0$?
 - AD $\beta_{tCBF} \neq 0$?

ROI Analysis

 $CN \beta_{tCBF} > 0$

- Multiple Regression
 - Adjusted for age/sex
 - Corrected for multiple comparisons

	$CN \beta_{tCBF} > 0$		
White Matter Regions Identified from TBSS (ICBM-DTI-81 Atlas Label #)	β_{tCBF}	\mathbb{R}^2	p-value
Genu of corpus callosum (3)	0.025	0.129	0.019*
Body of corpus callosum (4)	0.025	0.247	4e-04**
Splenium of corpus callosum (5)	0.019	0.176	0.013*
Anterior corona radiata R (23)	0.026	0.283	0.045*
Anterior corona radiata L (24)	0.027	0.212	0.034*
Superior corona radiata R (25)	0.019	0.237	0.075
Superior corona radiata L (26)	0.015	0.174	0.203
Posterior corona radiata R (27)	0.036	0.245	0.007*
Posterior corona radiata L (28)	0.035	0.216	0.008*
Posterior thalamic radiation R (29)	0.020	0.206	0.049*
Posterior thalamic radiation L (30)	0.021	0.169	0.078
Superior long. fasciculus R (41)	0.028	0.349	0.001**
Superior long, fasciculus L (42)	0.023	0.221	0.012*

Abbreviations: tCBF = total cerebral blood flow; NDI=neurite density index; CN=cognitively normal; AD=Alzheimer's disease; TBSS=tract-based spatial statistics

β: regression coefficient; R²: adjusted coefficient of determination

*p-values <0.05; **p-value<0.004 (Bonferroni correction for 13 ROIs).

Background · Methods · Results · Discussion

2. Fu X, et al (2020). Clin Neuroradiol 30(3)

Significant Findings

- 1. White matter density was decreased in AD subjects
 - Variety of WM regions^{1,2}
- 2. Positive correlation between cerebral blood flow and axon density in CN subjects
 - Corpus callosum
 - Superior longitudinal fasciculus
- 3. No associations between CVD and NDI for AD subjects

Limitations and Future Work

- Small sample size
- Need longitudinal data with subjects along the AD continuum to look at potential causative affects of CVD on WM microstructure

Conclusion

- WM microstructure alterations, as measured by NDI, were observed in AD group
- Cerebral blood flow was significantly correlated with WM axon density only in control group

Recent Work

Categorize patients using PET

- Total of 113 subjects from ADRC and WRAP
 - 60 subjects reconstructed so far
 - Using Dmipy for NODDI reconstruction
 - MUCH FASTER!
 - Scanned with 69-volume multi-shell sequence
 - Waiting on 53 remaining subjects
 - Scanned with 91-93 paired HYDI sequence
 - Consider data harmonization techniques

- Wieben Lab
- Eisenmenger Lab
- ADRC Vascular Team
- Waisman Brain Imaging Team
- GE Healthcare

Funding: F31AG071183; KL2TR002374; UL1TR002373; AARFD-20-678095; P50AG033514; R01AG021155

