

Assessment of Cerebrovascular Disease and White Matter Neurite Density in Alzheimer's Disease

<u>Grant Roberts¹</u>, Leonardo Rivera-Rivera², Kevin Johnson^{1,3}, Sterling Johnson², Douglas Dean III^{1,4}, Andrew Alexander^{1,5}, Oliver Wieben^{1,3}, and Laura Eisenmenger³

University of Wisconsin – Madison: Dept. of ¹Medical Physics, ²Medicine, ³Radiology, ⁴Pediatrics, ⁵Psychiatry

UNIVERSITY OF WISCONSIN-MADISO

Abstract #0267

ISMRM & SMRT Annual Meeting & Exhibition

An Online Experience

15-20 May 2021

Declaration of Financial Interests or Relationships

Speaker Name: Grant S. Roberts

I have the following financial interest or relationship to disclose with regard to the subject matter of this presentation:

Company Name: GE Healthcare Type of Relationship: Research Support SCONSIN-MADISON

Background

- Alzheimer's disease (AD)
 - Aβ plaques and neurofibrillary tangles
 - Cortical atrophy
 - Typically thought of as disease of grey matter
- However, white matter (WM) alterations also occur¹⁻⁴
 - Likely vascular-mediated
 - Disrupts brain microcirculation
 - Impaired clearance of waste products

Adapted From: Fu X, et al (2020). Clin Neuroradiol 30(3)

We have also shown vascular changes present in AD⁵⁻⁷

NIVERSITY OF WISCONSIN-MAD SON

Brun A, Englund, E (1986). Ann Neurol 19(3)
Agosta F, et al (2011). Radiology 258(3)
Slattery CF, et al (2017). Neurobiol Aging 57
Fu X, et al (2020). Clin Neuroradiol 30(3)
Rivera-Rivera LA, et al (2016). JCBFM 36(10)
Berman SE, et al (2015). Neuroimaging 1(4)
Rivera-Rivera LA, et al (2021). JCBFM 41(2)

*statistically significant (P<0.05)

250

[uim 200

Controls MCI AD (n=42, age=73±7) (n=34, age=73±9) (n=28, age=72±10)

From: Rivera-Rivera LA, et al (2020). JCBFM 41(2

Background

- Relationship between macrovascular flow and WM microstructure alterations is still unclear
- Goal:
 - Utilize 4D Flow MRI (cerebrovascular dynamics)
 - Utilize DTI NODDI (WM microstructure)
 - 20 AD and 41 cognitively normal (CN) subjects
- 1. Compare WM axon density between AD/CN groups
- 2. Correlate WM axon density with vascular measures
 - a. Carotid pulse wave velocity (stiffness)
 - **b.** Carotid pulsatility index (resistance)
 - c. Total cerebral blood flow OF WISCON

Image: Rivera-Rivera LA, et al (2016). JCBFM 36(10).

NODDI

Patient Demographics

- 20 Alzheimer's disease subjects
 - Characterized as "dementia due to probable AD^{1,2}"
- 41 Cognitively normal subjects

	CN (N=41)	AD (N = 20)	p-value		
Age (years)	74 ± 7	73 ± 9	0.96 ^a		
Female (n, %)	23, 56.1	13, 65.0	0.58 ^b		
Parental history of dementia (n, %)	1, 2.44	7, 35.0	0.001 ^b		
APOE ε4 carrier (n, %)*	1, 2.44	6, 30.0	2.51e-04 ^b		
SBP (mmHg)	132 ± 22	131 ± 19	0.78 ^a		
DBP (mmHg)	78 ± 9	75 ± 6	0.23ª		
HR (bpm)	62 ± 9	60 ± 11	0.55 ^a		
CN = cognitively normal; AD = Alzheimer's disease; APOE = apolipoprotein E; SBP = systolic blood pressure; DBP = diastolic blood pressure; HR = heart rate					
*Two sample t-test UNIVERSITY OF WISCONSIN-MADIS					
^b Fisher's exact test					
Bold indicates statistical significance (p<0.05)					

4D Flow Measurements

- Total cerebral blood flow (tCBF)
 - $tCBF = Flow_{ICA} + Flow_{BA}$
- Pulsatility index (PI) •

MR Parameter

Encoding Scheme

Scanner

Sequence

Projections

Resolution

Cardiac frames

Coil

TR

TE

V_{enc}

- Vascular resistance
- Pulse wave velocity (PWV) ullet
 - Vascular stiffness •
 - Local low rank reconstruction¹ ٠

Value

PCVIPR^{2,3}

11,000

7.4 ms

2.7 ms

75 cm/s

100

NODDI – Neurite Orientation Dispersion and Density Imaging¹

- Neurite density index (NDI)
- Orientation dispersion index (ODI)
- Free water fraction (f_{fw})

			W	
MR Parameter	Value		NODDI Compartments	NODDI Model
Scanner	3.0T GE Discovery MR750			Isotropic
Coil	32 Channel Head			Diffusion
Sequence	Spin-echo EPI		V _{iso} V _{ec}	Dispersed
Shells	$6 \times b=0 \text{ s/mm}^2$ $9 \times b=500 \text{ s/mm}^2$ $18 \times b=800 \text{ s/mm}^2$ $36 \times b=2000 \text{ s/mm}^2$	Neurites dendrites + axons		Sticks – Watson
Resolution	2 mm isotropic		V _{ic}	Distribution
TR	8575 ms			
TE	76.8 ms JNIVERSIIY	OF WISCONSIN	-MADISON	
Flip angle	8 degrees			

Voxel

Diffusion Tensor Data

- FSL/MRtrix^{1,2}
- NODDI Matlab Toolbox³
 - NDI maps

UNIVERSITY OF W

• FSL

- Tract-based Spatial Statistics: *tbss*⁴
- Statistical Analysis: *Glm (randomise⁵)*

¹Jenkinson M, et al (2012). *Neuroimage* 62 ²Tournier JD, et al (2019). *Nueroimage* 14 ³Zhang H, et al (2012). *Neuroimage* 61(4) ⁴Smith SM, et al (2006). *Neuroimage* 31(4) ⁵Winkler AM, et al (2014). *Neuroimage* 92(100)

TBSS Hypothesis Tests

- Are there differences in NDI Between AD and CN subjects?
- Are there correlations between PWV/PI/tCBF and NDI for AD and CN subjects? •
- *Post hoc* analysis in significant tracts
 - ROIs identified with JHU WM atlas •
 - Mean NDI values were extracted for ulleteach subject

TBSS Hypothesis Tests

- Compare NDI Between AD and CN
 - CN NDI > AD NDI?

Similar results observed by Slattery et al¹ and Fu et al²

1. Slattery CF, et al (2017). *Neurobiol Aging* 57 2. Fu X, et al (2020). *Clin Neuroradiol* 30(3)

ROI Analysis

- CN NDI > AD NDI
- WM regions identified on TBSS using JHU WM atlas
- <u>ANCOVA</u>
 - Adjusted for age/sex
 - Corrected for multiple comparisons

NIVER

White Matter Regions Identified from TBSS (ICBM-DTI-81 Atlas Label #)	CN Mean NDI	AD Mean NDI	p-value
Genu of Corpus Callosum (3)	0.526 ± 0.041	0.507 ± 0.047	0.1329
Body of Corpus Callosum (4)	0.595 ± 0.028	0.573 ± 0.034	0.0137*
Splenium of Corpus Callosum (5)	0.635 ± 0.031	0.597 ± 0.032	5.2e-05**
Anterior corona radiata R (23)	0.473 ± 0.056	0.438 ± 0.054	0.0138*
Anterior corona radiata L (24)	0.474 ± 0.053	0.429 ± 0.054	0.0019**
Superior corona radiata R (25)	0.590 ± 0.046	0.556 ± 0.058	0.0113*
Superior corona radiata L (26)	0.583 ± 0.048	0.541 ± 0.059	0.0024*
Posterior corona radiata R (27)	0.512 ± 0.055	0.473 ± 0.063	0.0153*
Posterior corona radiata L (28)	0.505 ± 0.054	0.467 ± 0.049	0.0104*
Posterior thalamic radiation R (29)	0.515 ± 0.041	0.474 ± 0.041	3.9e-04**
Posterior thalamic radiation L (30)	0.487 ± 0.048	0.438 ± 0.047	3.3e-04**
Sagittal stratum R (31)	0.510 ± 0.030	0.492 ± 0.033	0.0558
Sagittal stratum L (32)	0.487 ± 0.035	0.467 ± 0.038	0.0541
External capsule R (33)	0.506 ± 0.030	0.485 ± 0.028	0.0075*
External capsule L (34)	0.509 ± 0.026	0.483 ± 0.028	2.9e-04**
Cingulate gyrus R (35)	0.536 ± 0.023	0.510 ± 0.022	7.8e-05**
Cingulate gyrus L (36)	0.542 ± 0.024	0.510 ± 0.023	8.4e-06**
Cingulum (hippocampus) R (37)	0.496 ± 0.029	0.463 ± 0.036	2.8e-04**
Cingulum (hippocampus) L (38)	0.494 ± 0.022	0.469 ± 0.025	3.5e-04**
Superior longitudinal fasciculus R (41)	0.592 ± 0.034	0.557 ± 0.056	0.0069*
Superior longitudinal fasciculus L (42)	0.594 ± 0.038	0.552 ± 0.053	7.8e-04**
Superior fronto-occipital fasciculus R (43)	0.557 ± 0.074	0.520 ± 0.061	0.0317*
Superior fronto-occipital fasciculus (44)	0.542 ± 0.081	0.482 ± 0.070	0.0026*
Uncinate fasciculus R (45)	0.485 ± 0.026	0.454 ± 0.032	2.9e-05**
Uncinate fasciculus L (46)	0.484 ± 0.027	0.451 ± 0.022	1.6e-05**

Abbreviations: NDI=neurite density index; AD=Alzheimer's disease; CN=cognitively normal; TBSS=tract-based spatial statistics; R=right; L=left

*p-values <0.05; **p-value<0.002 (Bonferroni correction for 25 ROIs).

TBSS Hypothesis Tests

- Compare NDI Between AD and CN
 - CN NDI > AD NDI?
- Correlation PWV and NDI
 - No significant findings
- Correlation PI and NDI
 - No significant findings
- No significant findings!

WISCONSIN UNIVERSITY OF WISCONSIN-MADISON

TBSS Hypothesis Tests

Compare NDI Between AD and CN

UNIVERSI

- CN NDI > AD NDI?
- Correlation PWV and NDI
 - No significant findings

• Correlation - PI and NDI

- No significant findings
- Correlation tCBF and NDI
 - CN $\beta_{tCBF} \neq 0$? • AD $\beta_{tCBF} \neq 0$?

13

 $\begin{array}{l} \textbf{ROI Analysis} \\ \textbf{CN } \beta_{tCBF} > 0 \end{array}$

- <u>Multiple Regression</u>
 - Adjusted for age/sex
 - Corrected for multiple comparisons

	$CN \beta_{tCBF} > 0$		
White Matter Regions Identified from TBSS (ICBM-DTI-81 Atlas Label #)	βtCBF	R ²	p-value
Genu of corpus callosum (3)	0.025	0.129	0.019*
Body of corpus callesum (4)	0.025	0.247	4e-04**
Splenium of corpus callosum (5)	0.019	0.176	0.013*
Anterior corona radiata R (23)	0.026	0.283	0.045*
Anterior corona radiata L (24)	0.027	0.212	0.034*
Superior corona radiata R (25)	0.019	0.237	0.075
Superior corona radiata L (26)	0.015	0.174	0.203
Posterior corona radiata R (27)	0.036	0.245	0.007*
Posterior corona radiata L (28)	0.035	0.216	0.008*
Posterior thalamic radiation R (29)	0.020	0.206	0.049*
Posterior thalamic radiation L (30)	0.021	0.169	0.078
Superior long. fasciculus R (41)	0.028	0.349	0.001**
Superior long. fasciculus L (42)	0.023	0.221	0.012*

Abbreviations: tCBF = total cerebral blood flow; NDI=neurite density index; CN=cognitively normal; AD=Alzheimer's disease; TBSS=tract-based spatial statistics β : regression coefficient; R²: adjusted coefficient of determination

*p-values <0.05; **p-value<0.004 (Bonferroni correction for 13 ROIs).

JINIVERSIIY OF WISCONSIN-MADISON

Discussion

Significant Findings

- 1. White matter density was decreased in AD subjects
 - Variety of WM regions^{1,2}
- 2. Positive correlation between cerebral blood flow and axon density in CN subjects
 - Corpus callosum
 - Superior longitudinal fasciculus
- 3. No associations between CVD and NDI for AD subjects

Limitations and Future Work

- Small sample size
- Need longitudinal data with subjects along the AD continuum to look at potential causative affects of CVD on WM microstructure

Conclusion

- WM microstructure alterations, as measured by NDI, were observed in AD group
- Cerebral blood flow was significantly correlated with WM axon density only in control group

Acknowledgements

- Wieben Lab
- Eisenmenger Lab
- ADRC Vascular Team
- Waisman Brain Imaging Team
- GE Healthcare

Funding: F31AG071183; KL2TR002374; UL1TR002373; AARFD-20-678095; P50AG033514; R01AG021155

