
Brain MR Elastography: Acquisition and Reconstruction Strategies

From: Hiscox. Phys Med Bio (2016)

Elastography Introduction

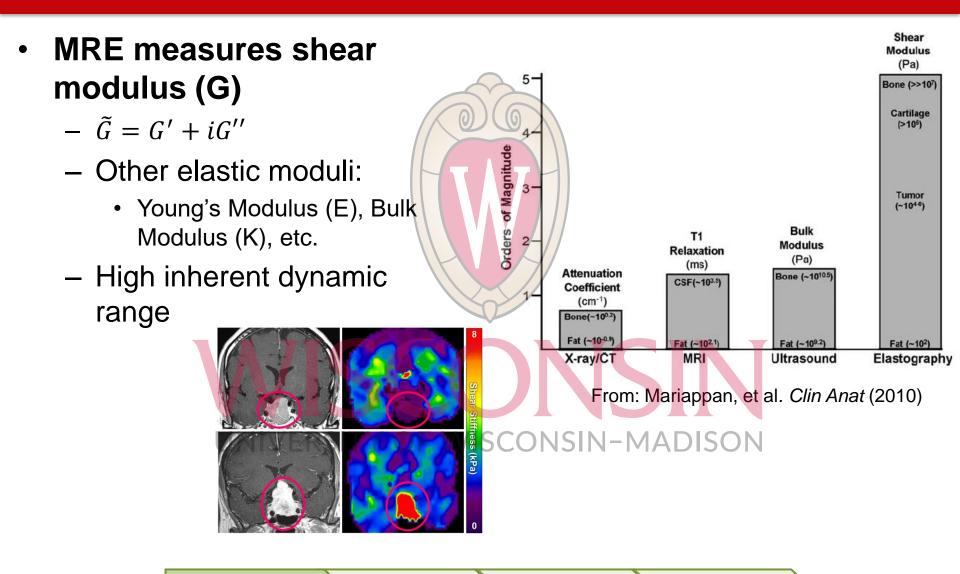
- Ingredients for elastography
 - 1. Mechanical excitation
 - 2. Measurement of tissue response
 - 3. Mechanical parameter estimation

Introduction Acquisition Reconstruction Conclusion

MR Elastography

- MRE allows quantitative analysis of viscoelastic properties of tissue
 - "Virtual palpation"
- Shear waves are introduced by driver (20-200Hz)
 - <u>Active</u> pneumatic driver placed outside of MR room
 - <u>Passive</u> driver placed under patient's head
- Wavelength dependent on shear modulus
 UNIVERSITY OF WISCONSING ADJ
 - Waves propagate rapidly in rigid tissue, slower in softer tissue

Soft pillow


Flexible

Active Driver (Acoustic)

plastic tubing

actuator

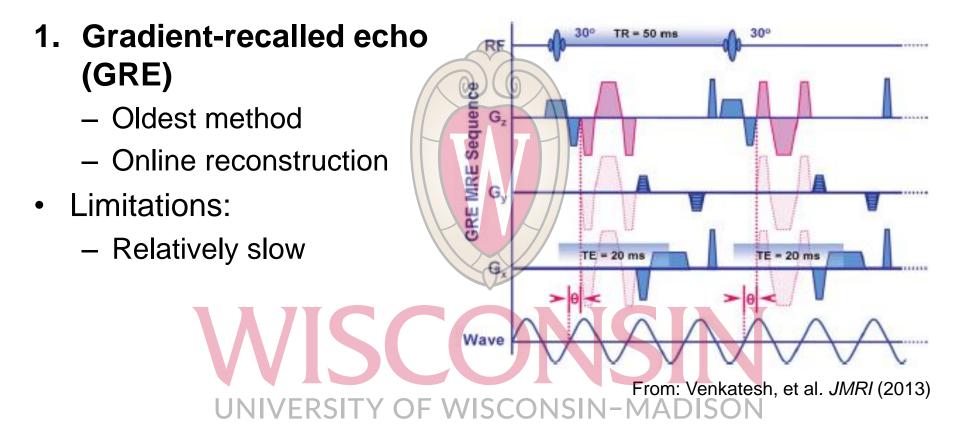
Shear Elastic Modulus

MRE Encoding

- Modified phase-contrast sequence
- Sensitized motion to cyclic displacement from shear waves
 - Spins accumulate phase along motion encoding gradients
 - Bipolar or 1st order motion compensated gradient
 - Synchronized to driver frequency
- Multiple acquisitions with phase offsets
 - Shows shear wave at different points in cycle
- <u>Goal: Acquire displacement fields in 3D (encode x,y,z)</u> <u>at different phase offsets</u>

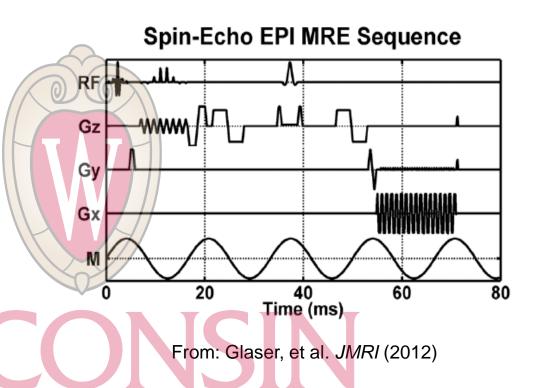
MRE Encoding

Phase is described by the following equation


$$-\phi(\vec{r},\theta) = \frac{\gamma NT(\vec{G}\cdot\xi_0)}{2}\cos(\vec{k}\cdot\vec{r}+\theta)$$

- ϕ = displacement induced phase
- \vec{r} = spatial position
- θ = phase offset
- γ = gyromagnetic ratio
- N = number of MEG pairs
- T = period of the MEG
- \vec{G} = gradient strength
- $\xi_0 = \text{peak amplitude of motionSCONSIN-MADISON}$
- k = wave number

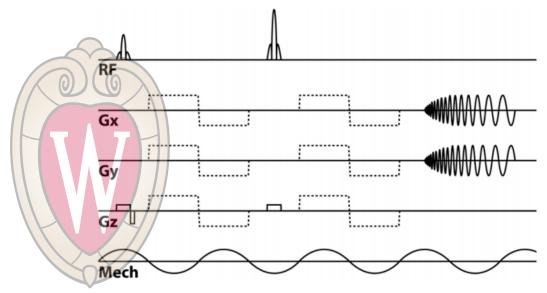
MRE Encoding (Visual)



GRE Acquisition

SE-EPI Acquisition

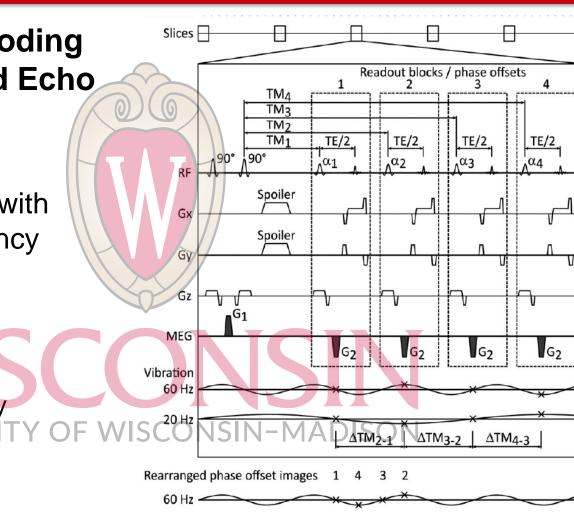
- 2. Single-shot echo planar imaging (SE-EPI)
 - Most common
 - What we use here
 - Much faster than GRE
 - Online reconstruction
- Limitations:
 - Long readouts
 - Distortion NIVERSITY OF WISCONSIN-MADISON
 - Reduced SNR


10

Acquisition

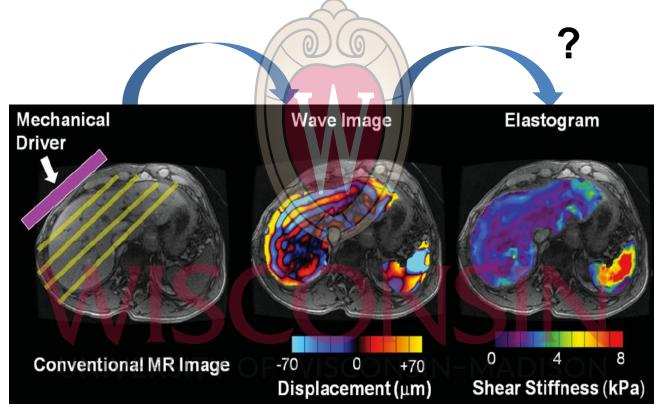
Conclusion

Multi-Shot Spiral Acquisition


- 3. Multi-shot, variable density spiral
 - Relatively new
 - Increased resolution
 - Increased SNR
 - Flexible Tradeoffs
- Limitations:
 - Phase error between shots from bulk motion
 - Offline Recon
 - Increased complexity

From: Johnson, et al. MRM (2013)

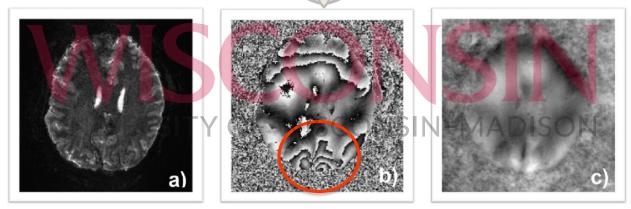
DENSE Acquisition


- 4. Displacement Encoding Using a Stimulated Echo (DENSE)
 - Relatively new
 - Allows for imaging with lower driver frequency
 - Fast/Efficient
- Limitations:
 - Offline Recon
 - Increased Complexity

From: Strasser, et al. MRM (2018)

Reconstruction

• How can we go from wave images to stiffness maps?

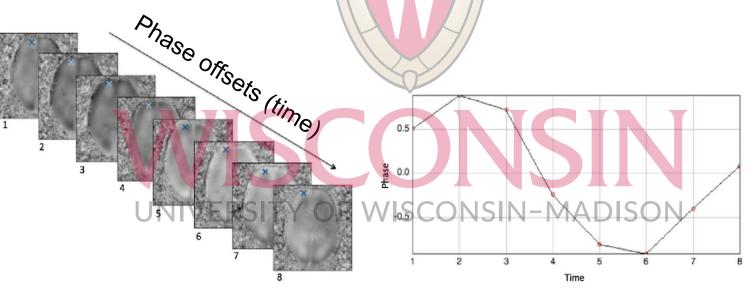


From: Venkatesh, et al. JMRI (2013)

Pre-Processing

1) Phase Unwrapping

- Higher amplitude of shear waves allows deeper penetration
- However, this leads to phase-wrapping near brain edges.
- Phase unwrapping algorithms need to be applied before stiffness reconstruction
 - 4D Laplacian-based algorithm



From: Hiscox. Phys Med Biol (2016)

Pre-Processing

- Low frequency bulk waves
 - Occur because brain is not incompressible
- High frequency noise
 - Prevent parameter overestimation

From: Hiscox. Phys Med Biol (2016)

LFE Reconstruction

1) Local frequency estimation (LFE)

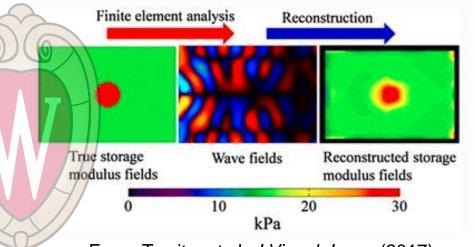
- Simplest, most-intuitive method
- Uses multiscale filters to estimate spatial wavelengths of shear waves in image.
- $G' = \rho V_S^2 = \rho (\lambda_{sp} f)^2$
 - ρ = tissue density (~1000 kg/m³)
 - V_s = shear wave speed
 - f = driver frequency
 - λ_{sp} = spatial frequency of shear wave
- Limitations:UNIVERSITY OF WISCONSIN-MADISON
 - Get only real part of shear modulus
 - Effected by boundary reflections and dilatational waves

DI Reconstruction

2) Single Frequency Direction Inversion (DI)

- Mechanical properties calculated *directly* through the wave equation.
- Complex inversion problem
 - Requires rank 4 tensor with 21 independent complex quantities to relate applied shear stress to resulting shear strain.
- If we assume tissue isotropy, we can greatly simplify problem.
 - $\tilde{G} = -\rho(2\pi f)^2 \cdot \vec{u}(f) / \nabla^2 \vec{u}(f)$
 - $\tilde{G} = \text{complex shear modulus}$
 - *f* = driver frequency
 - ρ = tissue density (~1000 kg/m³) WISCONSIN-MADISON
 - $\vec{u}(f)$ = frequency-dependent vector displacement field

DI Reconstruction


2) Single Frequency Direction Inversion (DI)

- Allows for a very quick calculation
 - Really only need to calculate $\nabla^2 \overline{u}(f)$
- UW scanners use DI
- Limitations:
 - Making many assumptions about material
 - Brain tissue is heterogenous and anisotropic
 - High noise sensitivity
 - Due to second derivative (Laplacian)
 - Susceptible to wave nodes
 - Imaging at single frequency OF WISCONSIN-MADISON

NLI Reconstruction

3) Non-Linear Inversion with Finite Element Models (NLI)

- Partial differential equations
- Forward problem utilizing prior knowledge
 - Boundary conditions
 - Tissue geometry
 - Mechanical properties

From: Tomita, et al. J Visual-Japan (2017)

- Iteratively update heterogenous tissue distribution until difference between experiment and theoretically derived data is minimized.
- Incorporates full equations of motion, nonlinearity, and anisotropy
- Limitations:
 - Speed of processing is on the order of hours

Conclusion

- MRE is a modified phase contrast sequence to encode displacement into image phase.
- Creates shear modulus maps
 - Must mechanically excite tissue
 - Measure/image tissue stress/strain
- Shear modulus has high dynamic range
- Acquisition Strategies:
 GRE, Spin-echo EPI, Multi-shot spiral, DENSE
- Reconstruction Strategies:
 - Local frequency estimation (LEE); Idirect inversion (DI), non-linear finite element modelling (NLI)

Acknowledgements

Wieben Group

Oliver Wieben Carson Hoffman Phil Corrado Dan Seiter Ruiming Chen Archana Dhyani Special Thanks To: Kevin Johnson Laura Eisenmenger Walter Block Alejandro Roldán-Alzate Alan McMillan Leonardo Rivera-Rivera David Rutkowski Robert Moskwa

UW MR Support Staff RSITY OF WISCONSIN-MADISON

Kelli Hellenbrand

Sara John

Jenelle Fuller

