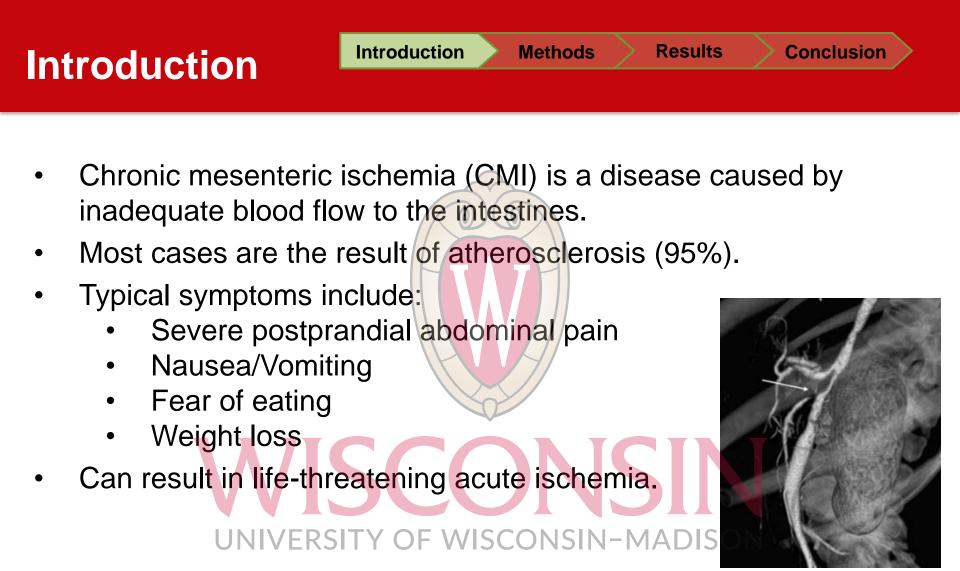
Hemodynamics of Chronic Mesenteric Ischemia Using 4D Flow MRI

Grant Roberts April 24, 2019

Question

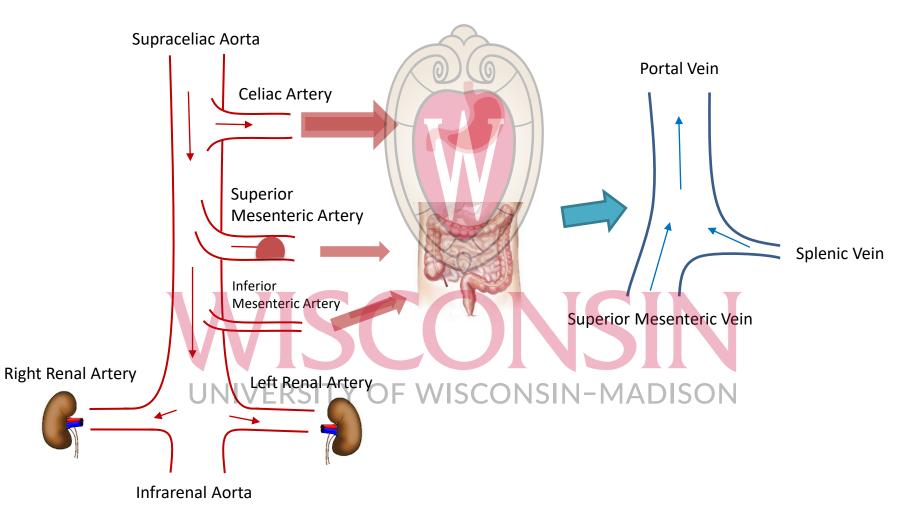

Introduction

Methods

Results

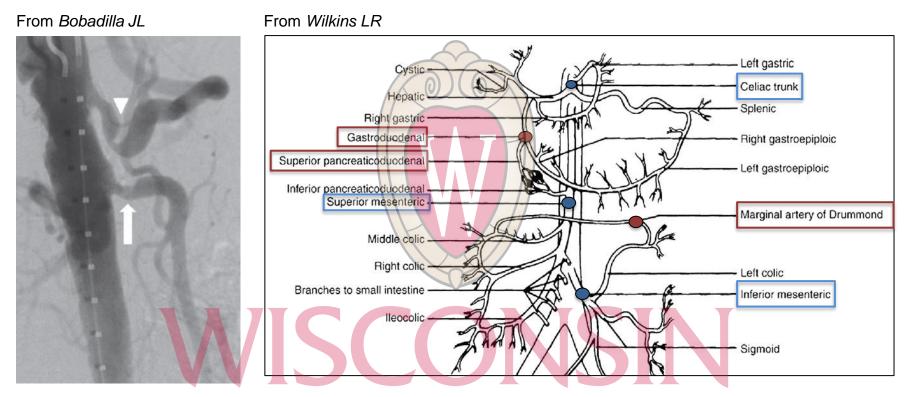
Conclusion

What information can 4D flow MRI provide to help in the challenging diagnosis of chronic mesenteric ischemia?


From Amin MA

- In normal individuals, mesenteric blood flow increases after a meal.
- In patients with CMI, this postprandial blood flow response is stunted due to restricted blood flow.
- Previous CMI studies using MRI^{1,2,3,4}
 - 2D CINE PC-MRI + meal challenges
 - Showed drastically reduced blood flow change after a meal in the superior mesenteric arteries/veins.
- 4D flow MRI has been proposed as a method to both functionally and anatomically evaluate mesenteric vasculature before and after a meal. UNIVERSITY OF WISCONSIN-MADISON

- 1. Li KCP, et al. Radiology 1994;190:175–179.
- 2. Burkart DJ, et. al. Radiology 1995;194:801-806.
- 3. Li KCP, et al. Radiology 1995;194:327–330.
- 4. Dalman RL, et al. Circulation 1996;94:206-210.



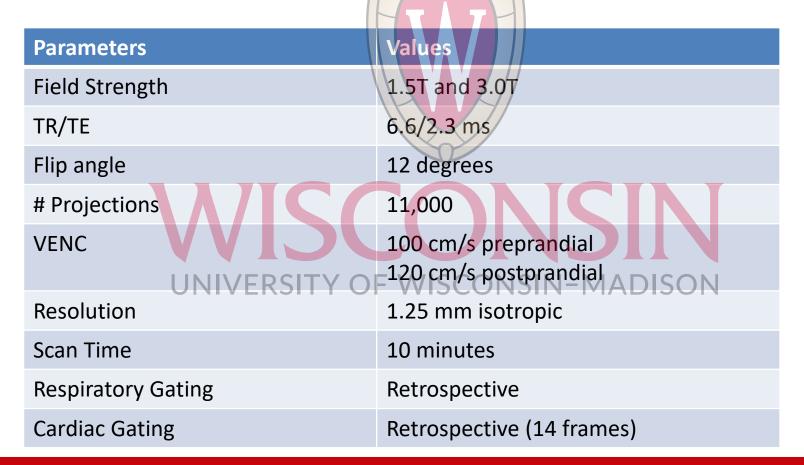
Anatomy

Introduction

Methods

Results

• Due to collateral circulation, patients may not experience symptoms until 2 or 3 major mesenteric vessels are involved.



- The goal of this study is to globally evaluate the hemodynamics of the mesenteric system in healthy individuals and suspected CMI patients.
- Retrospective study
 - Patients were referred from vascular surgery from 2012 to current.
 - Multiple imaging studies, including 4D flow.
 - Diagnosis given by Radiology. UNIVERSITY OF WISCONSIN-MADISON

- 1. Li KCP, et al. Radiology 1994;190:175–179.
- 2. Burkart DJ, et. al. Radiology 1995;194:801–806.
- 3. Li KCP, et al. Radiology 1995;194:327–330.
- 4. Dalman RL, et al. Circulation 1996;94:206-210.

- Subjects were imaged 5 hours after fasting (preprandial) and 25 minutes after a standardized meal (postprandial).
- Scans were performed using a PCVIPR sequence.

- Patients were subcategorized based on Radiology's diagnosis into negative and positive diagnosis of CMI.
- 3 Groups
 - Negative Diagnosis: 13 patients
 - 7 females, mean age: 44.3 years [21-86], mean weight: 70.1 kg
 - Positive Diagnosis (CMI): 6 patients
 - 4 females, mean age: 62.5 years [42-80], mean weight: 64.2 kg
 - Control Group: 20 individuals
 - 8 females, mean age: 44.4 years [19-73], mean weight: 80.2 kg

ERSITY OF WISCONSIN–MAD

SV

Introduction

Methods

Results

SCAo

CA

SMA

LRA

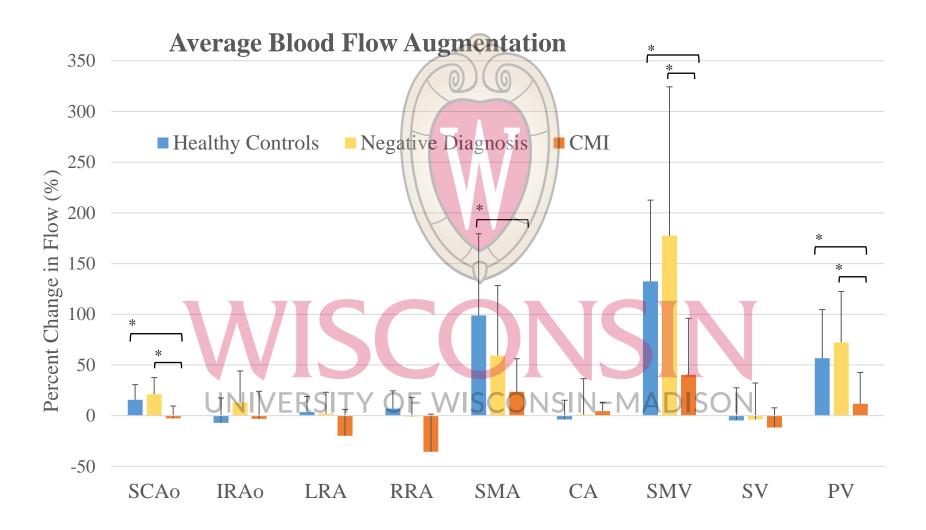
IRAo

Blood flow was measured:

- In controls, negative diagnosis, and CMI patients
- Both preprandial and postprandial
- In 9 vessels

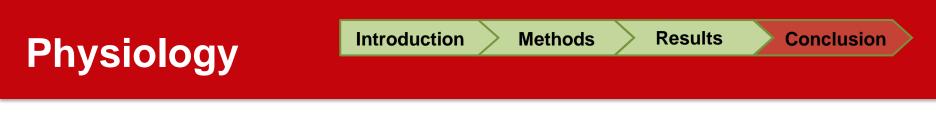
Methods

- Supraceliac (SCAo), infrarenal aorta (IRAo)
- Superior mesenteric artery (SMA)
- Celiac artery (CA)
- Right (RRA), left renal arteries(LRA)
- Superior mesenteric vein (SMV)
- Spleniciveir (SV) OF WISCONSIN-MADIS
- Portal Vein (PV)

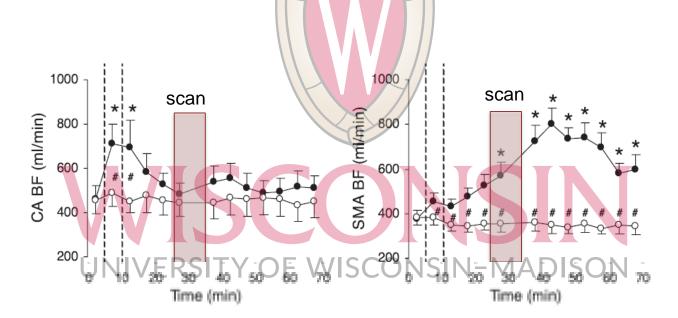


- Segmentation was performed in Mimics (Materialize, Belgium).
 - Thresholding + region-growing was applied to complex difference data
- 3D visualization, streamline generation, and cut-plane analysis was performed in Ensight (ANSYS, PA).
- Time-resolved hemodynamic analysis was performed in a customized 4D flow tool.

Results	Introduction	Methods	Results	Conclusion
ncounto				


Resu	lts		Intro	duction	Method	ls Re	esults	Conclus	ion
		Table	3: Avera	ge Perce	nt Chang	e in Flow	(%)		
	SCAo	IRAo	LRA	RRA	SMA	СА	SMV	SV	PV
Control	15.7 ± 15	-7.03 ± 24	3.58 ± 15	6.97 ± 18	98.8 ± 81	-3.73 ± 19	132 ± 81	-4.76 ± 32	56.7 ± 48
Neg. Diag.	21.1 ± 17	13.0 ± 31	2.03 ± 21	-0.95 ± 19	62.7 ± 67	0.93 ± 36	178 ± 147	-3.77 ± 36	72.1 ± 50
СМІ	<u>-2.57 ± 12</u>	-3.16 ± 27	-19.9 ± 26	-35.F±37	23.5 ± 33	4.52 ± 8.5	<u>40.3 ± 56</u>	-11.7 ± 19	<u>11.7 ± 31</u>
Percent change v <u>Underline</u> indicat					×	-	nce (p < 0.05) (compared to co	ontrols.
CMI - Control	p=0.0	22, d=0.956	S	p=0.0	003, d=0.865	p=0.	008, d=0.944	p=0.006	6, d=1.023
CMI – Neg. Diag	gn. p=0.0	08, d=1.150	RSITY	OF WIS	SCONS	N−Np≠0,	009, d=0.875	p=0.018	3, d=0.788

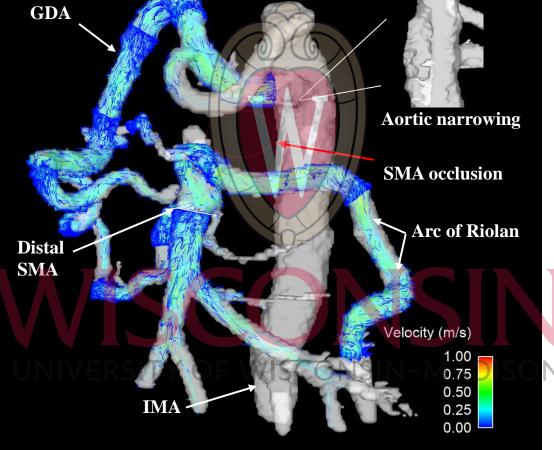
Results	Introduction	Methods	Results	Conclusion	
Results					

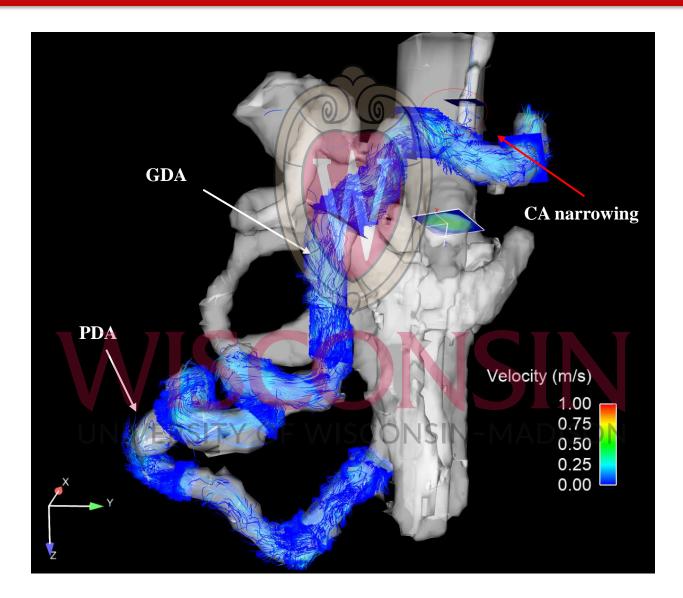

Paired T-Test p-values										
	SCAo	IRAo	LRA	RRA	SMA	CA	SMV	SV	PV	
Control	5.62E-05	0.170	0.716	0.103	5.20E-06	0.187	2.51E-08	0.129	1.17E-05	
Neg. Diag.	0.0049	0.468	0.980	0.913	0.003	0.535	3.05E-06	0.367	1.60E-05	
СМІ	0.592	0.868	0.097	0.122	0.193	0.290	0.120	0.221	0.255	
	-									

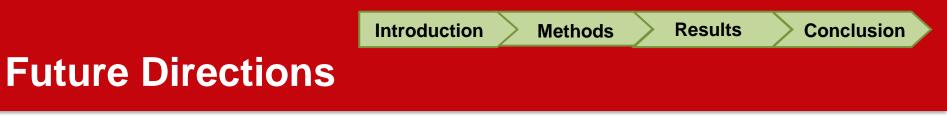
Effect Sizes (Cohen's D)

	SCAo	IRAo	LRA	RRA	SMA	СА	SMV	SV	PV
Control	0.381	-0.215	-0.019	0.139	1.256	-0.107	2.101	-0.216	1.137
Neg. Diag.	0.507	U0.180/E	R-9.004	00.014/19	50703 5	0.088 A	D1.665 N	-0.109	1.690
СМІ	-0.107	-0.080	-0.316	-0.416	0.465	0.101	0.777	-0.417	0.379

- Increase in mesenteric blood flow after meal
 - Immediate increase in celiac artery (CA)
 - Delayed increase in superior mesenteric artery (SMA)


Blood flow response after standardized meal is shown in black. From Someya et al.


Introduction Methods


Results

SMA occlusion

- Imaging controls and patients with the same field strength and body coil types.
- Larger patient cohort for stronger statistics.
- More automated image processing pipeline
 - One case took ~40 minutes for experienced user
- Acquiring an additional scan immediately after meal ingestion may show insight in CA flow.
- Measuring flow in IMA would provide a more comprehensive evaluation of mesenteric flow.
 UNIVERSITY OF WISCONSIN-MADISON

- There is strong evidence that quantifiable differences in blood flow patterns exist in CMI patients.
- 4D flow MRI possesses the unique capability of obtaining complete volumetric hemodynamic information in one scan.
 - Allowing for retrospective flow analysis in any vessel
- PC angiogram to morphologically assess stenoses and occlusions
- 4D flow MRI is a promising non-invasive diagnostic technique that can functionally and anatomically evaluate mesenteric vasculature.

Acknowledgements

MR Flow Group

Oliver Wieben Leonardo Rivera-Rivera Carson Hoffman Dahan Kim Phil Corrado Grant Roberts Dan Seiter Archana Dhyani Eric Schrauben Mike Loecher CFD Lab Alejandro Roldán-Alzate Sylvana Garcia Katrina Ruedinger David Rutkowski Rafael Medero Timothy Ruesink

Radiology Christopher Francois

WISCONSIN-MADISON

UW MR Support Staff

UNIVERSITY

Kelli Hellenbrand Sara John Jenelle Fuller

