

Outline

- Background: 4D Flow MRI 1.
- 2. Studies

UNIVE

- Defining "Normal" Flow and Pulsatility in Older Adults
 Appendix
 Software and Softwa UNIVERSITY OF WISCONSIN-MAL

UNIVER.

isual Watermark

Outline UNIVER

1. Background: 4D Flow MR

- 2. Studies:

Defining "Normal" Flow and Pulsatility in Older Adults UNIVERSITY OF WISCONSIN-MADIS

UNIVER.

MRI Images Are Complex!

٠

Phase Contrast MRI

2D Phase Contrast MRI

- Acquired data is complex-valued
 - Phase and magnitude
 - Phase maps often discarded
 - Can encode velocity into phase
 - Bipolar gradients
 - Phase contrast MRI
 - 2D Phase Contrast MRI
- Velocity encoded "through-plane"
 "Gated" over multiple heartbeats
 Time-resolved over cardiac cycle

4D Flow MRI

- Acquired data is complex-valued
 - Phase and magnitude
 - Phase maps often discarded
 - Can encode velocity into phase
 - Bipolar gradients
 - Phase contrast MRI
 - 2D Phase Contrast MRI
 - Velocity encoded "through-plane"
 "Gated" over multiple heartbeats
 Time-resolved over cardiac cycle
 4D Flow MRI
 - 4D? \rightarrow 3D Space + 1D Time
 - 3D velocity fields

Markl M, et al (2012) *JMRI*. 36(5)

4D Flow MRI of

- We have a lot of data!
- Image sizes: 320 x 320 x 320 x 20 **3D** volumes time Magnitude 🗸 Complex Difference Velocity \hat{y} Velocity \hat{z} Velocity \hat{x}' Cardiac Frames Time 20,1 Time 4 Time 3, Time 1 WISCONSI 01 FRSITI

UNIVER

 $\widehat{\mathbf{v}}$

Post-Processing

Commercial Software Tools

- Commercial 4D flow post-processing software exists
 - Applications primarily cardiac

No software dedicated to cranial 4D flow

WISCL

ter

10

INIVER

Outline UNIVER

- 1. Background: 4D Flow MRI
- 2. Studies:

Defining "Normal" Flow and Pulsatility in Older Adults UNIVERSITY OF WISCONSIN-MADIS

(6)

UNIVER.

Background

- Motivation
 - Limited software tools for flow analysis in brain
 - Small and tortuous vessels
 - Long post-processing times
 - Vascular alterations in Alzheimer's Disease using 4D Flow MRI

0.04

0.03

0.02

0.01

(a) 0

(1/Hz)

Power

ICA flow

-AD (n=23)

Sara Berman

Leonardo Rivera-Rivera

Background

- Motivation
 - Limited software tools for flow analysis in brain.
 - Small and tortuous vessels
 - Long post-processing times
 - Vascular alterations in Alzheimer's Disease using 4D Flow MRI

Previous cranial 4D flow analysis tool (CPS)

Automated segmentation Eric Schrauben + Umea Sweden (2015)

UNIVER

Background

- Motivation
 - Limited software tools for flow analysis in brain
 - Small and tortuous vessels
 - Long post-processing times
 - Vascular alterations in Alzheimer's Disease using 4D Flow MRI

Previous cranial 4D flow analysis tool (CPS)

- Eric Schrauben + Umea Sweden (2015)
- Automated segmentation

There were several limitations with this tool

- Poor angiogram/flow visualizations/ERSITY OF WISC
 Lengthy processing the
- K-means segmentation underestimates²

¹Schrauben E, et al (2015). JMRI 42(5) ²Dunas, T, et al (2019). JMRI 50(2)

Specific Aims

- Develop an improved "quantitative velocity tool" (QVT)^{1,2}
 - Interactive (3D) vessel selection
 - Add visualization tools
 - Improve vessel segmentation
 - Develop an automated threshold-based method for segmentation
 - Reduce processing times (faster flow quantification)
 - Publicly available: https://github.com/uwmi/Q
 - Validate Tool
 - In vitro (flow phantom)
- NISCO Comments (healthy volunteers)
 - **Compare CPS and QVT** head-to-head

Carson	Hoffman

Customized 4D Flow MRI General outline of automated post-processing steps: Global segmentation Create centerlines (skeletonization) Cut-plane generation In-plane segmentation Calculate hemodynamics Automatic Cut-Planes Flow Analysis Global Segmentation Create Centerlines Complex Difference Velocity Time Average Magnitude **Binary Mask**

16

Methods – Sliding Threshold Segmentation

In-Plane Segmentation

- "Sliding threshold" method
- 1. Take initial cut-plane
- 2. Segment image over large range of threshold values
- 3. Plot sum of non-zero voxels as a function of threshold value
- 4. Set threshold as point of max curvature
- 5. Clean binarized image

Methods – MRI Parameters

- ADRC Scan Protocol
 - 3T MR750 (GE Healthcare)
 - 4D Flow MRI
 - Radial acquisition (PCVIPR^{1,2})
 - FOV: 22x22x22 cm
 - Spatial resolution: 0.68 mm
 - V_{enc} = 80 cm/s
 - Scan Duration: ~7 min
 5-point velocity encoding
- Reconstruction
 - Retrospective cardiac gating
 - 20 cardiac phases
 - Temporal radial view sharing

In Vivo: Healthy Controls

Scans: 10 healthy volunteers

Methods – Segmentation Validation

- 4D Flow MRI
 - QVT (new tool)
 - Sliding-threshold segmentation
 - CPS (old tool)

WISCONSIN-MADISON

K-means segmentation

In Vitro: Intracranial

Scans: 7 pulsatile flow rates Scans: (0.8-1.2 L/min)

In Vivo: Healthy Controls

Scans: 10 healthy volunteers

Methods – Segmentation Validation Co-Registered Measurement 4D Flow MRI **Cone Beam CT** Locations (*) **CT-MRI** • QVT (new tool) Threshold segmentation • CPS (old tool) K-means segmentation In Vitro **Reference: Hi-Res CT** Vessel areas WISCONSI29 locations x 7 flow rates UNIVERSITY sual Watermark 20

Methods – Segmentation Validation 4D Flow MRI • QVT (new tool) Middle Cerebral Anterior Cerebral **Posterior Cerebral** Arteries (MCA) Arteries (ACA) Threshold segmentation Arteries (PCA) **Straight Sinus** CPS (old tool) (SS) K-means segmentation In Vitro Superior Sagittal **Reference: Hi-Res CT Internal Carotid** Sinus (SSS) Arteries (ICA) Vessel areas **Transverse Sinus Basilar Artery (BA)** (TS) Reference: Manual Segmentation ERSITY OF WISCONSIN Vessel areas and Dice coofficient NISIn Vivo UNIVERSITY 13 locations x 5 neighboring planes x 10 subjects sual Watermark 2′

Methods – Flow Validation

4D Flow MRI

WISCONSIN-MADISON

• QVT – Flow Rates

UNIVE

In Vitro: Intracranial

Scans: 7 pulsatile flow rates Sca (0.8-1.2 L/min) In Vivo: Healthy Controls

Scans: 10 healthy volunteers

Methods – Flow Validation

- 4D Flow MRI
 - QVT Flow Rates

In Vitro

- Reference: Ultrasound
- Inlet/Outlet flow

WISCONSIN-MADISON

7 flow rates

Silicon Phantom

UNIVER

Methods – Flow Validation

- 4D Flow MRI
 - QVT Flow Rates

UNIVE

In Vitro

In Vivo

- **Reference: Ultrasound**
- Inlet/Outlet flow •
 - 7 flow rates

Internal Consistency

- NISCO Conservation of flow
 - 3 vessel junctions x 10 subjects
 - LICA = LMCA + LACA
 - RICA = RMCA + RACA
 - SSS + SS = LTS + RTS

UNIVERSITY

Results – Flow In Vitro

Reference: Ultrasound

Inlet vs. Outlet Flow

WISCONSIN-MADISON

• 7 flow rates (0.8 – 1.2 mL/min)

UNIVER

Results – Flow In Vivo

Results – Flow In Vivo

UNIVE

- Flow measures repeatable between observers
- Processing times reduced by >2x

	Method	Angiogram (min)	Load Data* (min)	Vessel Select (min)	Total Case (min)	Per Plar (min)
	CPS	0.8 ± 0.1	1.0 ± 0.2	15.6 ± 3.4	17.5 ± 3.4	1.2 ± 3.2
	QVT	0.2 ± 0.02	2.3 ± 0.4	4.7 ± 0.9	7.94 ± 1.0	0.4 ± 1.0
ſ		, ADV.	•			

*Data loading for QVT included saving reloadable MATLAB file structures.

UNIVER

QVT Visualization Features

1911

~~1511

Outline

- 1. Background: 4D Flow MRI
- 2. Studies:
 - Cranial 4D Flow MRI Analysis Tool

Defining "Normal" Flow and Pulsatility in Older Adults MADISON MISCONSUMMARY

UNIVER.

Background - Clinical Motivation Low energy metabolism due to aging Low perfusion due to aging Cortical large infarcts Breakdown of Lacunar infarcts neurovascular coupling Blood Flow (mL/min) 350 All correlations are statistically significant 300 (P<0.05) except if mark with " 250 200Important to establish normal cerebrovascular constitution hemodynamics in older adults PCA distal ICA sup ICA inf MCA Basilar PCA prox Middle age (n=174) ■ AD (n=37) ■ MCI (n=44) ■ Normal older (n=59)

Courtesy: Leonardo Rivera-Rivera, PhD

Adequate cerebral blood flow is important

- As we age, neurovascular changes begin to occur
 - Arterial stiffening¹
 - Breakdown of neurovascular unit² •
 - Affect cerebral hemodynamics and cognition
 - Relationship with Alzheimer's disease (AD)
 - Macrovascular changes³⁻⁵
 - Microvascular (perfusion) changes⁶
 - Normative data is still lacking

¹Mitchell GF, et al (2011). Brain. 134(11) ²Tarantini S, et al (2017). Exp Gerontol. 94 ³Rivera-Rivera LA, et al (2016), JCBFM, 36(10)

⁴Rivera-Rivera LA, et al (2017). JCBFM. 37(6) ⁵Rivera-Rivera LA, et al (2020). Neurolmage Clin. 28 ⁶Clark LR, et al (2017). Alzheimers Dement. 7

Specific Aims

WISCONSIN-MADISON

UNIVERSITY

- Use QVT to analyze 4D flow MRI data from 759 older adults
 - Obtain reference blood flow rates and flow pulsatility indices in 13 major cerebral arteries and 4 major sinuses

UNIVERSITY OF WISCONSIN-MADISON

Assess the relationship between age and sex on blood flow and pulsatility

Methods – Study Population

- Subjects retrospectively recruited from:
 - Wisconsin Alzheimer's Disease Research Center (ADRC)
 - Wisconsin Registry for Alzheimer's Prevention (WRAP)
 - Between March 2010 March 2020
 - Exclusion criteria:
 - Abnormal cognitive status
 - PiB index > 1.19^{1}
 - Image quality and cardiac gating quality

759 subjects (mean age 65 years)

NISCONSome measures deviate from "normal" ... J⊑4 carriers • Parental history of dementia UNIVERSITY OF WISCONSI

Subject demographic	S			
		Count (n)	Percent (%)	N*
Sex				759
	Female	506	66.7	5
	Male	253	33.3	$\left(\right)$
Race				757
	White	645	85.3	
Black or African A	merican	82	10.7	IH
America	an Indian	24	3.2	
	Asian	2	0.3	
	Other	4	0.5	
Diabetes		63	9.1	689
Smoker		29	4.2	689
On Anti-hypertensive M	eds	240	34.8	689
Parental history of dem	entia	500	67.6	740
APOE ε4 carrier**		247	35.6	694
		Mean	SD	N*
Age (years)		64.7	7.7	759
Systolic Blood Press. (r	nmHg)	125.1	16.4	751
Diastolic Blood Press. (mmHg)	76.9	8.3	R 5751
Total Cholesterol (mg/d	L)	199.0	39.4	744
Triglycerides (mg/dL)	-	106.4	56.7	744

*Total number of measured data points over all subjects (759 total). **APOE £4 carrier defined as presence of at least one APOE £4 allele.

Methods – Acquisition, Reconstruction, Analysis

- Scan Protocol
 - 3T on 3 different GE scanners
 - Radially-undersampled PCVIPR^{1,2}

Reconstruction

- 20 cardiac frames
- Temporal view sharing
- Parallel imaging with localized sensitivities (PILS)
- Maxwell term phase correction
- 3rd order background phase correction

Analysis

- Two observers analyzed 759 cases
 - Observer 1 = 302 cases (40%)
 - Observer 2 = 457 cases (60%)
- Multiple linear regression
- Linear mixed effects modelling

¹Gu T, et al (2005). *AJNR* 26(4). ²Johnson KM, et al (2008). *MRM* 60(6).

Anthony Peret

Erin Jonaitis Rebecca Koscik

TE (ms)	2.63		
Flip Angle (degrees)	8		
Matrix Size	320		
Resolution Size (mm)	0.69		
Radial Projections	11000		
VENC (cm/s)	80		
Encoding Scheme	4-point (58%)		
	5-point (42%)		
Scan Time (min)	5.6 (58%)		
	7.1 (42%)		

Value

7.71

MRI Scanners and Coils

MRI Coil Type	Discovery MR750 (N=611)	Signa PET/MR (N=8)	Signa Premier (N=140)
48 channel	-	-	140
32 channel	565	-	- ()
8 channel	46	8	-

MRI Acquisition Parameters

Characteristic

TR (ms)

Methods – Post-Processing

Results – Pulsatility UNIVE

UNIVER

UNIVERSITY

Results – Pulsatility

Pulsatility in All Vessel Segments

UNIVERSITY

UNIVER

Results – Total Flow vs. Age/Sex

Results – Flow vs. Age/Sex

Ŵ

Mixed Effects Regression: Flow ~ Age + Sex + (1 + Age | Vessel) + (1 | Participant)

	β (coefficients)			
	Intercept	Age	Sex (male)	
FIXED EFFECT	135.4***	-0.95***	-1.60	
ICA_C1	295.4	-1.33		
ICA_C3	305.4	-1.38		
MCA	188.4	-0.98		
ACA	115.9	-0.72		
ВА	198.4	-1.23		
VA	117.6,50	-0.72		
PCA	88.5	-0.55		
TS ONSIN	247.0	-0.47		
STR	111.7	-0.58		
SSS	386.0	-2.04		

T-Tests using Satterthwaite's Method *p<0.05 **p<0.01 ***p<0.001

Results – Pulsatility vs. Age/Sex

Mixed Effects Regression: PI ~ Age + Sex + (1 + Age | Vessel) + (1|Participant)

		β (coefficients)			
		Intercept	Age	Sex (male)	
	FIXED EFFECT	0.146**	0.011***	-0.018*	
	ICA_C1	0.174	0.014	-0.012	
	ICA_C3	0.227	0.014	-0.012	
	MCA	0.271	0.014	-0.012	
Υ.	ACA	0.333	0.016	-0.012	
	BA	0.286	0.015	-0.012	
	VA	0.329 50	0.017	-0.012	
	PCA	0.441	0.016	-0.012	
	IS-ONSI	0.211	0.011	-0.012	
	STR	0.405	0.011	-0.012	
	SSS	0.069	0.011	-0.012	

T-tests using Satterthwaite's method *p<0.05 **p<0.01 ***p<0.001

Outline UNIVER-UNIVER.

- 1. Background: 4D Flow MRI 6
- 2. Studies:
 - Cranial 4D Flow MRI Analysis Tool
- Defining "Normal" Flow and Pulsatility in Older Adults UNIVERSITY OF WISCONSIN-MADISO

Summary

- 4D flow MRI powerful method for obtaining 3D velocity fields in vivo
 - Blood velocities, blood flow rates, pulsatility index, etc.

Developed cranial 4D flow MRI analysis tool

- Interactive 3D vessel selection and visualization
- Accurate segmentation and flow quantification

Established "normative" intracranial flow/pulsatility in 759 adults

- Strong age dependence on flow and pulsatility
- One of the largest 4D flow studies to date

Some Other Projects

Some Other Projects

~~!5!!

NODDI DTI vs. 4D Flow MRI

Jason Moody Alma Spahic

Abdominal 4D Flow MRI

Brain MR Elastography

~~1511

Leonardo Rivera-Rivera

rmark

Scott Reeder

Thekla Oechtering

UNIVER

Acknowledgements

UW MR Flow Group

Oliver Wieben, PhD Daniel Seiter, MS Ruiming Chen, MS Ruo-Yu Liu, BS Tarun Naren, BS Laura Eisenmenger, MD Leonardo Rivera, PhD Anthony Peret, MD Alma Spahic, MS

Collaborators

Alejandro Roldan Lab Kevin Johnson Lab Thekla Oechtering, MD Bill Schrage Lab Wisconsin ADRC Ozioma Okonkwo Lab Sterling Johnson Lab Jill Barnes Lab

Funding: The research was supported by the National Institute on Aging (F31AG071183). The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.

National Institute on Aging

Publications relevant to this talk

- Roberts, G. S., Hoffman, C. A., Rivera-Rivera, L. A., Berman, S. E., Eisenmenger, L. B., & Wieben, O (2023). "Automated Hemodynamic Assessment for Cranial 4D Flow MRI". *Magnetic Resonance Imaging*. 10.1016/j.mri.2022.12.016.
- 2. Roberts, G. S., Peret, A., Hoffman, C. A., Koscik, R. L., Jonaitis, E. M., Rivera-Rivera, L. A., Cody, K. A., Rowley, H. A., Johnson, S. C., Wieben, O., Johnson, K. M., & Eisenmenger, L. B (2023). "Normative Cerebral Blood Flow and Pulsatility in Cognitively Unimpaired Older Adults using 4D Flow MRI". *Accepted to Radiology*.
- Roberts, G. S., Loecher, M. W., Spahic, A., Johnson, K. M., Turski, P. A., Eisenmenger, L. B., & Wieben, O. (2022). "Virtual Injections Using 4D Flow MRI with Displacement Corrections and Constrained Probabilistic Streamlines". *Magnetic Resonance in Medicine*. 10.1002/mrm.29134.
- Eisenmenger, L. B., Peret, A., Famakin, B. M., Spahic, A., Roberts, G. S., Bockholt, H. J., Johnson, K. M., & Paulsen, J. S. (2022). "Vascular Contributions to Alzheimer's Disease". *Translation Research*, 47 10.1016/j.trsl.2022.12.003.